19 research outputs found

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies

    Shell we cook it? An experimental approach to the microarchaeological record of shellfish roasting

    Get PDF
    In this paper, we investigate the microarchaeological traces and archaeological visibility of shellfish cooking activities through a series of experimental procedures with direct roasting using wood-fueled fires and controlled heating in a muffle furnace. An interdisciplinary geoarchacological approach, combining micromorphology, FTIR (in transmission and ATR collection modes), TGA and XRD, was used to establish a baseline on the mineralogical transformation of heated shells from aragonite to calcite and diagnostic sedimentary traces produced by roasting fire features. Our experimental design focused on three main types of roasting procedures: the construction of shallow depressions with heated rocks (pebble cuvette experiments), placing shellfish on top of hot embers and ashes (fire below experiment), and by kindling short-lived fires on top of shellfish (fire above experiments). Our results suggest that similar shellfish roasting procedures will largely create microstratigraphic signatures of anthropogenically reworked combusted material spatially "disconnected" from the actual combustion locus. The construction of shallow earth ovens might entail an increased archaeological visibility, and some diagnostic signatures of in situ hearths can be obtained by fire below roasting activities. We also show that macroscopic visual modifications and mineralogical characterization of discarded shellfish might be indicative of specific cooking activities versus secondary burning.Max Planck Societyinfo:eu-repo/semantics/publishedVersio

    Mobilizing patient and public involvement in the development of real-world digital technology solutions: tutorial

    Get PDF
    Although the value of patient and public involvement and engagement (PPIE) activities in the development of new interventions and tools is well known, little guidance exists on how to perform these activities in a meaningful way. This is particularly true within large research consortia that target multiple objectives, include multiple patient groups, and work across many countries. Without clear guidance, there is a risk that PPIE may not capture patient opinions and needs correctly, thereby reducing the usefulness and effectiveness of new tools. Mobilise-D is an example of a large research consortium that aims to develop new digital outcome measures for real-world walking in 4 patient cohorts. Mobility is an important indicator of physical health. As such, there is potential clinical value in being able to accurately measure a person’s mobility in their daily life environment to help researchers and clinicians better track changes and patterns in a person’s daily life and activities. To achieve this, there is a need to create new ways of measuring walking. Recent advancements in digital technology help researchers meet this need. However, before any new measure can be used, researchers, health care professionals, and regulators need to know that the digital method is accurate and both accepted by and produces meaningful outcomes for patients and clinicians. Therefore, this paper outlines how PPIE structures were developed in the Mobilise-D consortium, providing details about the steps taken to implement PPIE, the experiences PPIE contributors had within this process, the lessons learned from the experiences, and recommendations for others who may want to do similar work in the future. The work outlined in this paper provided the Mobilise-D consortium with a foundation from which future PPIE tasks can be created and managed with clearly defined collaboration between researchers and patient representatives across Europe. This paper provides guidance on the work required to set up PPIE structures within a large consortium to promote and support the creation of meaningful and efficient PPIE related to the development of digital mobility outcomes. J Med Internet Res 2023;25:e44206 doi:10.2196/4420

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    No full text
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies.publishedVersio
    corecore