39,533 research outputs found

    Solar thermal plant impact analysis and requirements definition

    Get PDF
    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed

    Phase equilibria and phase transformations in the Ti-rich corner of the Fe-Ni-Ti system

    Get PDF
    While the main features of the Fe-Ni-Ti system are well known at low Ti content, literature review of the Ti-rich corner revealed inconsistencies between experimental reports. This investigation presents new experimental results, defined to remove the uncertainties concerning melting behavior and solid-state phase equilibria of the (Ni,Fe)Ti2 phase with the adjacent (Fe,Ni)Ti (B2, CsCl-type structure) and Beta-Ti (A2, W-type) phases. Six samples have been prepared and examined by differential thermal analysis performed in yttria and alumina crucibles, and by scanning electron microscopy in the as-cast state as well as equilibrated at 900°C

    Ce(IV)-induced Reduction of Tl(III) by Hydrogen Peroxide

    Get PDF
    243-24

    Pulsars in FIRST Observations

    Get PDF
    We identified 16 pulsars from the Faint Images of the Radio Sky at Twenty-cm (FIRST) at 1.4 GHz. Their positions and total flux densities are extracted from the FIRST catalog. Comparing the source positions with those in the PSRcatalog, we obtained better determined positions of PSRs J1022+1001, J1518+4904, J1652+2651, and proper motion upper limits of another three pulsars PSRs J0751+1807, J1012+5307, J1640+2224. Proper motions of the other 10 pulsars are consistent with the values in the catalog.Comment: 6 pages, 2 figures, 3 tables, submited to CJA

    Staggered fermion matrix elements using smeared operators

    Get PDF
    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 444^4 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0\beta=6.0, 6.2 and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2GeV)=0.62±0.02(stat)±0.02(syst)B_K(NDR, 2 GeV)= 0.62\pm 0.02(stat)\pm 0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one-loop. We do not include any estimate of the errors due to quenching or to the use of degenerate ss and dd quarks. For the ΔI=3/2\Delta I = {3/2} electromagnetic penguin operators we find B7(3/2)=0.62±0.03±0.06B_7^{(3/2)} = 0.62\pm 0.03\pm 0.06 and B8(3/2)=0.77±0.04±0.04B_8^{(3/2)} = 0.77\pm 0.04\pm 0.04. We also use the ratio of unsmeared to smeared operators to make a partially non-perturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be \alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps

    How are Forbush decreases related to interplanetary magnetic field enhancements ?

    Full text link
    Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag the IMF enhancement by a few hours. The lag corresponds to the time taken by high energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions. Our findings show that high rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME.Comment: accepted in A&
    • …
    corecore