1,886 research outputs found
On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations
The two-dimensional unsteady coupled Burgers' equations with moderate to
severe gradients, are solved numerically using higher-order accurate finite
difference schemes; namely the fourth-order accurate compact ADI scheme, and
the fourth-order accurate Du Fort Frankel scheme. The question of numerical
stability and convergence are presented. Comparisons are made between the
present schemes in terms of accuracy and computational efficiency for solving
problems with severe internal and boundary gradients. The present study shows
that the fourth-order compact ADI scheme is stable and efficient
High-energy gamma-ray emission from the inner jet of LS I+61 303: the hadronic contribution revisited
LS I+61 303 has been detected by the Cherenkov telescope MAGIC at very high
energies, presenting a variable flux along the orbital motion with a maximum
clearly separated from the periastron passage. In the light of the new
observational constraints, we revisit the discussion of the production of
high-energy gamma rays from particle interactions in the inner jet of this
system. The hadronic contribution could represent a major fraction of the TeV
emission detected from this source. The spectral energy distribution resulting
from p-p interactions is recalculated. Opacity effects introduced by the photon
fields of the primary star and the stellar decretion disk are shown to be
essential in shaping the high-energy gamma-ray light curve at energies close to
200 GeV. We also present results of Monte Carlo simulations of the
electromagnetic cascades developed very close to the periastron passage. We
conclude that a hadronic microquasar model for the gamma-ray emission in LS I
+61 303 can reproduce the main features of its observed high-energy gamma-ray
flux.Comment: 6 pages. Sligth improvements made. Accepted version by Astrophysics
and Space Scienc
Two-Photon, Two-gluon and Radiative Decays of Heavy Flavoured Mesons
Here we present the two-photon and two-gluon decay widths of the S-wave
() and P-wave () charmonium and bottonium
states and the radiative transition decay widths of , and
systems based on Coulomb plus power form of the inter-quark potential
() with exponent . The Schrdinger equation is solved
numerically for different choices of the exponent . We employ the masses
of different states and their radial wave functions obtained from the study to
compute the two-photon and two-gluon decay widths and the E1 and M1 radiative
transitions. It is found that the quarkonia mass spectra and the E1 transition
can be described by the same interquark model potential of the with
for and for systems, while the M1
transition (at which the spin of the system changes) and the decay rates in the
annihilation channel of quarkonia are better estimated by a shallow potential
with .Comment: 27 Pages, 8 figure
Effect of Introduction of Fault and Imperfect Debugging on Release Time
One of the most important decisions related to the efficient management of testing phase of software development life cycle is to determine when to stop testing and release the software in the market. Most of the testing processes are imperfect once. In this paper first we have discussed an optimal release time problem for an imperfect faultdebugging model due to Kapur et al considering effect of perfect and imperfect debugging separately on the total expected software cost. Next, we proposed a SRGM incorporating the effect of imperfect fault debugging and error generation. The proposed model is validated on a data set cited in literature and a release time problem is formulated minimizing the expected cost subject to a minimum reliability level to be achieved by the release time using the proposed model. Solution method is discussed to solve such class of problem. A numerical illustration is given for both type of release problem and finally a sensitivity analysis is performed
Multi-criteria media mix decision model for advertising multiple product with segment specific and mass media
Judicious media planning decisions are crucial for successful advertising of products. Media planners extensively use mathematical models supplemented with market research and expert opinion to devise the media plans. Media planning models discussed in the literature largely focus on single products with limited studies related to the multi-product media planning. In this paper we propose a media planning model to allocate limited advertising budget among multiple products advertised in a segmented market and determine the number of advertisements to be given in different media. The proposed model is formulated considering both segment specific and mass media vehicles to maximize the total advertising reach for each product. The model also incorporates the cross product effect of advertising of one product on the other. The proposed formulation is a multi-objective linear integer programming model and interactive linear integer goal programming is discussed to solve the model. A real life case study is presented to illustrate the application of the proposed model
Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis—A Role Relevant for Seed Vigor Prediction and Plant Robustness
Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)–stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight readyto- use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction
An overview of the ciao multiparadigm language and program development environment and its design philosophy
We describe some of the novel aspects and motivations behind
the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system
Persistent currents in a Bose-Einstein condensate in the presence of disorder
We examine bosonic atoms that are confined in a toroidal,
quasi-one-dimensional trap, subjected to a random potential. The resulting
inhomogeneous atomic density is smoothened for sufficiently strong, repulsive
interatomic interactions. Statistical analysis of our simulations show that the
gas supports persistent currents, which become more fragile due to the
disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT
Random Walks in Logarithmic and Power-Law Potentials, Nonuniversal Persistence, and Vortex Dynamics in the Two-Dimensional XY Model
The Langevin equation for a particle (`random walker') moving in
d-dimensional space under an attractive central force, and driven by a Gaussian
white noise, is considered for the case of a power-law force, F(r) = -
Ar^{-sigma}. The `persistence probability', P_0(t), that the particle has not
visited the origin up to time t, is calculated. For sigma > 1, the force is
asymptotically irrelevant (with respect to the noise), and the asymptotics of
P_0(t) are those of a free random walker. For sigma < 1, the noise is
(dangerously) irrelevant and the asymptotics of P_0(t) can be extracted from a
weak noise limit within a path-integral formalism. For the case sigma=1,
corresponding to a logarithmic potential, the noise is exactly marginal. In
this case, P_0(t) decays as a power-law, P_0(t) \sim t^{-theta}, with an
exponent theta that depends continuously on the ratio of the strength of the
potential to the strength of the noise. This case, with d=2, is relevant to the
annihilation dynamics of a vortex-antivortex pair in the two-dimensional XY
model. Although the noise is multiplicative in the latter case, the relevant
Langevin equation can be transformed to the standard form discussed in the
first part of the paper. The mean annihilation time for a pair initially
separated by r is given by t(r) \sim r^2 ln(r/a) where a is a microscopic
cut-off (the vortex core size). Implications for the nonequilibrium critical
dynamics of the system are discussed and compared to numerical simulation
results.Comment: 10 pages, 1 figur
- …
