58 research outputs found

    Low-temperature Kinetics Measurements Of The Gas-phase Reactions Between Aromatic Species And The Cn Radical

    Get PDF
    It remains an open question as to whether polycyclic aromatic hydrocarbons (PAHs) can be efficiently formed in the ISM by bottom-up mechanisms involving growth from small aromatic precursors like benzene. However, the lack of dipole moment renders benzene invisible in the radio regime making estimation of the abundance of benzene in the ISM difficult. The recent detection of benzonitrile in the Taurus Molecular Cloud (TMC)-1 has caused excitement in the astrochemical community as it is the first aromatic molecule detected in the interstellar medium (ISM) using radio astronomy. Benzonitrile is thought to form via the neutral-neutral reaction between the CN radical and benzene, and therefore may serve as a chemical proxy to determine the abundance of benzene. The abundances of aromatic species in ISM environments are not well understood, in part due to a lack of experimental kinetics data. Both rate constants and product-branching ratios for the reactions of aromatic molecules must be measured at low temperature in order to input these reactions into astrochemical models and accurately predict abundances. Benzene and toluene are two of the aromatic species detected in the atmosphere of Titan and their reactions with the CN radical have been studied down to 105 K by Trevitt et al. Here, we have extended this study down to 15 K to approach dense cloud conditions and have measured the rate constants of the reactions of benzene and toluene with the CN radical using the well-established CRESU technique (Cin\'{e}tique de R\'{e}action en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) combined with the Pulsed Laser Photolysis-Laser-Induced Fluorescence method. I will also discuss our recent progress in combining chirped-pulse micro/mm-wave spectroscopy with the CRESU method and how we plan to employ this technique to measure product branching ratios for reactions of the CN radical with aromatics at low temperatures

    Observing Chemical Reactions In Low-temperature Supersonic Flows Using Chirped Pulse Fourier Transform Millimeter Wave Spectroscopy

    Get PDF
    The CPUF (Chirped Pulse in Uniform Flow) technique has been used previously in pulsed CRESU (Reaction Kinetics in Uniform Supersonic Flow) conditions to observe chemical reactions at low temperatures. We have adapted the technique to the continuous CRESU flows available in Rennes, and have observed the products of photolysis and chemical reactions using a chirped pulse Fourier transform millimeter wave spectrometer. We have characterized the flow conditions suitable for observing products of reactions and provide limits to the performance of these systems. In particular, pressure broadening is found to dominate these measurements, so steps had to be taken to resolve as much of the free induction decays as possible. We also observe the products of chemical reactions, particularly of CN radicals with hydrocarbons. The behavior of these products in CRESU environments as well as the results from these studies will be given and the application to observing the branching ratios of chemical reactions will be discussed

    Benzonitrile as a Proxy for Benzene in the Cold ISM: Low-temperature Rate Coefficients for CN + C₆H₆

    Get PDF
    The low-temperature reaction between CN and benzene (C₆H₆) is of significant interest in the astrochemical community due to the recent detection of benzonitrile, the first aromatic molecule identified in the interstellar medium (ISM) using radio astronomy. Benzonitrile is suggested to be a low-temperature proxy for benzene, one of the simplest aromatic molecules, which may be a precursor to polycyclic aromatic hydrocarbons. In order to assess the robustness of benzonitrile as a proxy for benzene, low-temperature kinetics measurements are required to confirm whether the reaction remains rapid at the low gas temperatures found in cold dense clouds. Here, we study the C₆H₆ + CN reaction in the temperature range 15–295 K, using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with pulsed-laser photolysis-laser-induced fluorescence. We obtain rate coefficients, k(T), in the range (3.6–5.4) × 10⁻Âč⁰ cmÂł s⁻Âč with no obvious temperature dependence between 15 and 295 K, confirming that the CN + C₆H₆ reaction remains rapid at temperatures relevant to the cold ISM

    Benzonitrile as a Proxy for Benzene in the Cold ISM: Low-temperature Rate Coefficients for CN + C₆H₆

    Get PDF
    The low-temperature reaction between CN and benzene (C₆H₆) is of significant interest in the astrochemical community due to the recent detection of benzonitrile, the first aromatic molecule identified in the interstellar medium (ISM) using radio astronomy. Benzonitrile is suggested to be a low-temperature proxy for benzene, one of the simplest aromatic molecules, which may be a precursor to polycyclic aromatic hydrocarbons. In order to assess the robustness of benzonitrile as a proxy for benzene, low-temperature kinetics measurements are required to confirm whether the reaction remains rapid at the low gas temperatures found in cold dense clouds. Here, we study the C₆H₆ + CN reaction in the temperature range 15–295 K, using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with pulsed-laser photolysis-laser-induced fluorescence. We obtain rate coefficients, k(T), in the range (3.6–5.4) × 10⁻Âč⁰ cmÂł s⁻Âč with no obvious temperature dependence between 15 and 295 K, confirming that the CN + C₆H₆ reaction remains rapid at temperatures relevant to the cold ISM

    Rate Constants of the CN + Toluene Reaction from 15 – 294 K and Interstellar Implications

    Get PDF
    CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies have focused on the reactions between CN and aromatic molecules. The recent detection of benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene (C₇H₈) reaction between 15 and 294 K using a CRESU (CinĂ©tique de RĂ©action en Ecoulement Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the pulsed laser photolysis–laser-induced fluorescence (PLP–LIF) technique. We also present the stationary points on the potential energy surface of this reaction to study the available reaction pathways. We find the rate constant does not change over this temperature range, with an average value of (4.1 ± 0.2) × 10⁻Âč⁰ cmÂł s⁻Âč, which is notably faster than the only previous measurement at 105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is related to enhanced multiphoton effects in the previous work

    Rate Constants of the CN + Toluene Reaction from 15 – 294 K and Interstellar Implications

    Get PDF
    CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies have focused on the reactions between CN and aromatic molecules. The recent detection of benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene (C₇H₈) reaction between 15 and 294 K using a CRESU (CinĂ©tique de RĂ©action en Ecoulement Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the pulsed laser photolysis–laser-induced fluorescence (PLP–LIF) technique. We also present the stationary points on the potential energy surface of this reaction to study the available reaction pathways. We find the rate constant does not change over this temperature range, with an average value of (4.1 ± 0.2) × 10⁻Âč⁰ cmÂł s⁻Âč, which is notably faster than the only previous measurement at 105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is related to enhanced multiphoton effects in the previous work

    Hard X-Ray Polarization Catalog for a Five-year Sample of Gamma-Ray Bursts Using AstroSat CZT Imager

    Get PDF
    The Cadmium Zinc Telluride Imager (CZTI) on board AstroSat has been regularly detecting gamma-ray bursts (GRBs) since its launch in 2015. Its sensitivity to polarization measurements at energies above 100 keV allows CZTI to attempt spectropolarimetric studies of GRBs. Here, we present the first catalog of GRB polarization measurements made by CZTI during its first five years of operation. This includes the time-integrated polarization measurements of the prompt emission of 20 GRBs in the energy range 100-600 keV. The sample includes the bright GRBs that were detected within an angle range of 0 degrees-60 degrees and 120 degrees-180 degrees where the instrument has useful polarization sensitivity and is less prone to systematics. We implement a few new modifications in the analysis to enhance the polarimetric sensitivity of the instrument. The majority of the GRBs in the sample are found to possess less/null polarization across the total bursts' duration in contrast to a small fraction of five GRBs that exhibit high polarization. The low polarization across the bursts might be due either to the burst being intrinsically weakly polarized or to a varying polarization angle within the burst even when it is highly polarized. In comparison to POLAR measurements, CZTI has detected a larger number of cases with high polarization. This may be a consequence of the higher energy window of CZTI observations, which results in the sampling of a shorter duration of burst emissions than POLAR, thereby probing emissions with less temporal variation in polarization properties

    Mesure de constante de vitesse et de rapport de branchement pour des rĂ©actions d'intĂ©rĂȘt astrochimique avec le radical CN

    No full text
    Des Ă©tudes en laboratoire Ă  basse tempĂ©rature pour explorer des rĂ©actions impliquant le radical CN,d’interet astrochimique ont Ă©tĂ© rĂ©alisĂ©es en utilisant la technique CRESU couplĂ©e aux technique dephotolyse par laser pulsĂ©e - fluorescence induite par laser et spectroscopie micro-ondes Ă  transformĂ©ede Fourier Ă  impulsions chirpĂ©.Les coefficients de vitesse pour la rĂ©action du radical CN avec le mĂ©thanol, le benzĂšne, et le toluĂšneont Ă©tĂ© mesurĂ©s de 296 K Ă  16 K en utilisant la technique de photolyse par laser pulsĂ©e - fluorescence induite par laser en measurant la concentration de radical CN en fonction du temps. Une dĂ©pendance thermique nĂ©gative a Ă©tĂ© observĂ©e pour la rĂ©action du mĂ©thanol avec le CN, prĂ©sentĂ©e dans lechapitre 4, typique de ce qui a Ă©tĂ© vu prĂ©cĂ©demment pour d’autres rĂ©actions radicalaires neutres quine possĂšdent pas de barriĂšres Ă©nergĂ©tiques potentielles. Les mesures diffĂšrent considĂ©rablement des valeurs presentent dans la base de donnĂ©es cinĂ©tique pour l’astrochimie (KIDA) utilisĂ©es dans divers modĂšles astrochimiques. Le chapitre 5 couvre les mesures de cinĂ©tique pour la rĂ©action entre deux molĂ©cules aromatiques, le benzĂšne et le toluĂšne et le radical CN, demontrant que ces rĂ©actions restent rapides jusqu’à 16 K. Les implications interstellaires potentielles de ces mesures Ă  la lumiĂšre de la dĂ©tection rĂ©cente de cyano-substitution du benzĂšne dans le milieu interstellaire sont discutĂ©s.La deuxiĂšme partie de cette thĂšse s’est concentrĂ©e sur l’étude du rapport de branchement spĂ©cifique pour la rĂ©action du radical CN avec le propĂšne Ă  35 K. Ces expĂ©riences ont Ă©tĂ© rĂ©alisĂ©es Ă  l’aide du spectromĂštre micro-ondes par transformĂ©e de Fourier Ă  impulsions chirpĂ©es en bande E rĂ©cemment dĂ©veloppĂ© intĂ©grĂ© avec la technique CRESU. Permettant la dĂ©tection d’un produit de rĂ©astion, quiest une premiĂšre pour cette rĂ©action en dessous de la tempĂ©rature ambiante. Les rĂ©sultats de cette rĂ©action sont prĂ©sentĂ©s au chapitre 6 ainsi que les perspectives de cette Ă©tude.Des Ă©tudes en laboratoire Ă  basse tempĂ©rature pour explorer des rĂ©actions impliquant le radical CN,d’intĂ©rĂȘt astrochimique ont Ă©tĂ© rĂ©alisĂ©es en utilisant la technique CRESU couplĂ©e aux technique de photolyse par laser pulsĂ©e - fluorescence induite par laser et spectroscopie micro-ondes Ă  transformĂ©e de Fourier Ă  impulsions chirpĂ©. Les coefficients de vitesse pour la rĂ©action du radical CN avec le mĂ©thanol, le benzĂšne, et le toluĂšne ont Ă©tĂ© mesurĂ©s de 296 K Ă  16 K en utilisant la technique de photolyse par laser pulsĂ©e - fluorescence induite par laser en mesurant la concentration de radical CN en fonction du temps. Une dĂ©pendance thermique nĂ©gative a Ă©tĂ© observĂ©e pour la rĂ©action du mĂ©thanol avec le CN, prĂ©sentĂ©e dans le chapitre 4, typique de ce qui a Ă©tĂ© vu prĂ©cĂ©demment pour d’autres rĂ©actions radicalaires neutres quine possĂšdent pas de barriĂšres Ă©nergĂ©tiques potentielles. Les mesures diffĂšrent considĂ©rablement des valeurs prĂ©sentent dans la base de donnĂ©es cinĂ©tique pour l’astrochimie (KIDA) utilisĂ©es dans divers modĂšles astrochimiques. Le chapitre 5 couvre les mesures de cinĂ©tique pour la rĂ©action entre deux molĂ©cules aromatiques, le benzĂšne et le toluĂšne et le radical CN, dĂ©montrant que ces rĂ©actions restent rapides jusqu’à 16 K. Les implications interstellaires potentielles de ces mesures Ă  la lumiĂšre de la dĂ©tection rĂ©cente de cyano-substitution du benzĂšne dans le milieu interstellaire sont discutĂ©s. La deuxiĂšme partie de cette thĂšse s’est concentrĂ©e sur l’étude du rapport de branchement spĂ©cifique pour la rĂ©action du radical CN avec le propĂšne Ă  35 K. Ces expĂ©riences ont Ă©tĂ© rĂ©alisĂ©es Ă  l’aide du spectromĂštre micro-ondes par transformĂ©e de Fourier Ă  impulsions chirpĂ©es en bande E rĂ©cemment dĂ©veloppĂ© intĂ©grĂ© avec la technique CRESU. Permettant la dĂ©tection d’un produit de rĂ©action, qui est une premiĂšre pour cette rĂ©action en dessous de la tempĂ©rature ambiante. Les rĂ©sultats de cette rĂ©action sont prĂ©sentĂ©s au chapitre 6 ainsi que les perspectives de cette Ă©tude

    Mesure de constante de vitesse et de rapport de branchement pour des rĂ©actions d'intĂ©rĂȘt astrochimique avec le radical CN

    No full text
    Des Ă©tudes en laboratoire Ă  basse tempĂ©rature pour explorer des rĂ©actions impliquant le radical CN,d’intĂ©rĂȘt astrochimique ont Ă©tĂ© rĂ©alisĂ©es en utilisant la technique CRESU couplĂ©e aux technique de photolyse par laser pulsĂ©e - fluorescence induite par laser et spectroscopie micro-ondes Ă  transformĂ©e de Fourier Ă  impulsions chirpĂ©. Les coefficients de vitesse pour la rĂ©action du radical CN avec le mĂ©thanol, le benzĂšne, et le toluĂšne ont Ă©tĂ© mesurĂ©s de 296 K Ă  16 K en utilisant la technique de photolyse par laser pulsĂ©e - fluorescence induite par laser en mesurant la concentration de radical CN en fonction du temps. Une dĂ©pendance thermique nĂ©gative a Ă©tĂ© observĂ©e pour la rĂ©action du mĂ©thanol avec le CN, prĂ©sentĂ©e dans le chapitre 4, typique de ce qui a Ă©tĂ© vu prĂ©cĂ©demment pour d’autres rĂ©actions radicalaires neutres quine possĂšdent pas de barriĂšres Ă©nergĂ©tiques potentielles. Les mesures diffĂšrent considĂ©rablement des valeurs prĂ©sentent dans la base de donnĂ©es cinĂ©tique pour l’astrochimie (KIDA) utilisĂ©es dans divers modĂšles astrochimiques. Le chapitre 5 couvre les mesures de cinĂ©tique pour la rĂ©action entre deux molĂ©cules aromatiques, le benzĂšne et le toluĂšne et le radical CN, dĂ©montrant que ces rĂ©actions restent rapides jusqu’à 16 K. Les implications interstellaires potentielles de ces mesures Ă  la lumiĂšre de la dĂ©tection rĂ©cente de cyano-substitution du benzĂšne dans le milieu interstellaire sont discutĂ©s. La deuxiĂšme partie de cette thĂšse s’est concentrĂ©e sur l’étude du rapport de branchement spĂ©cifique pour la rĂ©action du radical CN avec le propĂšne Ă  35 K. Ces expĂ©riences ont Ă©tĂ© rĂ©alisĂ©es Ă  l’aide du spectromĂštre micro-ondes par transformĂ©e de Fourier Ă  impulsions chirpĂ©es en bande E rĂ©cemment dĂ©veloppĂ© intĂ©grĂ© avec la technique CRESU. Permettant la dĂ©tection d’un produit de rĂ©action, qui est une premiĂšre pour cette rĂ©action en dessous de la tempĂ©rature ambiante. Les rĂ©sultats de cette rĂ©action sont prĂ©sentĂ©s au chapitre 6 ainsi que les perspectives de cette Ă©tude.Des Ă©tudes en laboratoire Ă  basse tempĂ©rature pour explorer des rĂ©actions impliquant le radical CN,d’interet astrochimique ont Ă©tĂ© rĂ©alisĂ©es en utilisant la technique CRESU couplĂ©e aux technique dephotolyse par laser pulsĂ©e - fluorescence induite par laser et spectroscopie micro-ondes Ă  transformĂ©ede Fourier Ă  impulsions chirpĂ©.Les coefficients de vitesse pour la rĂ©action du radical CN avec le mĂ©thanol, le benzĂšne, et le toluĂšneont Ă©tĂ© mesurĂ©s de 296 K Ă  16 K en utilisant la technique de photolyse par laser pulsĂ©e - fluorescence induite par laser en measurant la concentration de radical CN en fonction du temps. Une dĂ©pendance thermique nĂ©gative a Ă©tĂ© observĂ©e pour la rĂ©action du mĂ©thanol avec le CN, prĂ©sentĂ©e dans lechapitre 4, typique de ce qui a Ă©tĂ© vu prĂ©cĂ©demment pour d’autres rĂ©actions radicalaires neutres quine possĂšdent pas de barriĂšres Ă©nergĂ©tiques potentielles. Les mesures diffĂšrent considĂ©rablement des valeurs presentent dans la base de donnĂ©es cinĂ©tique pour l’astrochimie (KIDA) utilisĂ©es dans divers modĂšles astrochimiques. Le chapitre 5 couvre les mesures de cinĂ©tique pour la rĂ©action entre deux molĂ©cules aromatiques, le benzĂšne et le toluĂšne et le radical CN, demontrant que ces rĂ©actions restent rapides jusqu’à 16 K. Les implications interstellaires potentielles de ces mesures Ă  la lumiĂšre de la dĂ©tection rĂ©cente de cyano-substitution du benzĂšne dans le milieu interstellaire sont discutĂ©s.La deuxiĂšme partie de cette thĂšse s’est concentrĂ©e sur l’étude du rapport de branchement spĂ©cifique pour la rĂ©action du radical CN avec le propĂšne Ă  35 K. Ces expĂ©riences ont Ă©tĂ© rĂ©alisĂ©es Ă  l’aide du spectromĂštre micro-ondes par transformĂ©e de Fourier Ă  impulsions chirpĂ©es en bande E rĂ©cemment dĂ©veloppĂ© intĂ©grĂ© avec la technique CRESU. Permettant la dĂ©tection d’un produit de rĂ©astion, quiest une premiĂšre pour cette rĂ©action en dessous de la tempĂ©rature ambiante. Les rĂ©sultats de cette rĂ©action sont prĂ©sentĂ©s au chapitre 6 ainsi que les perspectives de cette Ă©tude

    Sujet de thĂšse en cours : Rate coefficients and branching ratio measurements for reactions of astrochemical relevance involving CN radical [Soutenance 06.10.2021]

    No full text
    supervisors Ian Sims and Ilsa Cooke (department of molecular physics)sous la direction de Ian Sims et Ilsa Cooke, dans le département de physique moléculair
    • 

    corecore