753 research outputs found

    Two-Warehouse Partial Backlogging Inventory Model For Deteriorating Items With Ramp Type Demand

    Get PDF
    This paper deals with two warehouse system for deteriorating items with ramp type demand. In this inventory model initially demand is considered to be linear function of time and it became constant after a finite time parameter. Holding cost assume to be constant in both warehouse. Partial backlogging is allowed. The proposed model is developing to minimize the total inventory cost which includes holding cost, backlogging cost, lost sale cost, and deterioration cost. Here three cases are taken into consideration depending on time where demand becomes constant. This is only an analytic approach towards the model. Keywords: - Two warehouse inventory, ramp type demand, holding cost, deteriorating item

    Specific heat at constant volume in the thermodynamic model

    Full text link
    A thermodynamic model for multifragmentation which is frequently used appears to give very different values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is used. The cause for this discrepancy is analysed.Comment: Revtex, 7 pages including 4 figure

    Exploring the Lattice Gas Model for isoscaling

    Full text link
    Isotopic spin dependent lattice gas model is used to examine if it produces the isoscaling behaviour seen in intermediate energy heavy ion collisions. Qualitative features are reproduced but quantitative agreement with experiments is lacking.Comment: 13 pages including 6 figures. (Some typing mistakes in the references have been corrected in the 2nd version

    Retrofitting of a 420 kV draw-lead type bushing with a draw-rod type – Part I

    Get PDF
    On observation of deterioration of tan-ÎŽ value to 1.08 %, i.e., surpassing the limiting value of 0.7 % as defined in IEC60137 for the 420 kV OIP bushing for a 315 MVA, 400 / 220 / 33 kV transformer located at substation Katni (India), a decision was made to replace the bushing. The replacement was risky, and it was a threat of causing the catastrophic failure for the transformer itself and the colossal loss to the neighbouring equipment and structures

    Negative specific heat in a thermodynamic model of multifragmentation

    Full text link
    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. In this model cvc_v is always positive but for finite nuclei cpc_p can be negative for some temperatures and pressures. Furthermore, negative values of cpc_p can be obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values for cpc_p can persist for systems as large as 200 paticles but this depends upon parameters used in the model calculation. As expected, negative specific heats are absent in the thermodynamic limit.Comment: Revtex, 13 pages including 6 figure

    Caloric Curves for small systems in the Nuclear Lattice Gas Model

    Get PDF
    For pedagogical reasons we compute the caloric curve for 11 particles in a 333^3 lattice. Monte-Carlo simulation can be avoided and exact results are obtained. There is no back-bending in the caloric curve and negative specific heat does not appear. We point out that the introduction of kinetic energy in the nuclear Lattice Gas Model modifies the results of the standard Lattice Gas Model in a profound way.Comment: 12 pages, Revtex, including 4 postscript figure

    The condensate for two dynamical chirally improved quarks in QCD

    Get PDF
    We compare the eigenvalue spectra of the Dirac operator from a simulation with two mass degenerate dynamical chirally improved fermions with Random Matrix Theory. Comparisons with distribution of k-th eigenvalues (k=1,2) in fixed topological sectors (nu=0,1) are carried out using the Kolmogorov-Smirnov test. The eigenvalue distributions are well described by the RMT predictions. The match allows us to read off the quark condensate in the chiral limit directly. Correcting for finite size and renormalization we obtain a mean value of -(276 (11)(16) MeV)**3 in the MS-bar scheme.Comment: 8 pages, 2 figures, Final version. To be publishe

    Self-trapping transition for nonlinear impurities embedded in a Cayley tree

    Full text link
    The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping transition is observed in each case. It is also observed that the transition is much sharper compared to the case of one-dimensional lattices. For each system, the critical values of χ\chi for the self-trapping transitions are found to obey a power-law behavior as a function of the connectivity KK of the Cayley tree.Comment: 6 pages, 7 fig

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR

    Gauge-ball spectrum of the four-dimensional pure U(1) gauge theory

    Get PDF
    We investigate the continuum limit of the gauge-ball spectrum in the four-dimensional pure U(1) lattice gauge theory. In the confinement phase we identify various states scaling with the correlation length exponent Μ≃0.35\nu \simeq 0.35. The square root of the string tension also scales with this exponent, which agrees with the non-Gaussian fixed point exponent recently found in the finite size studies of this theory. Possible scenarios for constructing a non-Gaussian continuum theory with the observed gauge-ball spectrum are discussed. The 0++0^{++} state, however, scales with a Gaussian value Μ≃0.5\nu \simeq 0.5. This suggests the existence of a second, Gaussian continuum limit in the confinement phase and also the presence of a light or possibly massless scalar in the non-Gaussian continuum theory. In the Coulomb phase we find evidence for a few gauge-balls, being resonances in multi-photon channels; they seem to approach the continuum limit with as yet unknown critical exponents. The maximal value of the renormalized coupling in this phase is determined and its universality confirmed.Comment: 46 pages, 12 figure
    • 

    corecore