322 research outputs found

    Two \u3ci\u3eEntomophthora\u3c/i\u3e Species Associated with Disease Epizootics of the Alfalfa Weevil, \u3ci\u3eHypera Postica\u3c/i\u3e (Coleoptera: Curculionidae), in Ontario

    Get PDF
    Recent studies have shown that disease epizootics in Ontario populations of the alfalfa weevil, Hypera postica (Gyllenhal), are caused by a complex of two fungi

    Integrin α2ÎČ1 Expression Regulates Matrix Metalloproteinase-1-Dependent Bronchial Epithelial Repair in Pulmonary Tuberculosis.

    Get PDF
    Pulmonary tuberculosis (TB) is caused by inhalation of Mycobacterium tuberculosis, which damages the bronchial epithelial barrier to establish local infection. Matrix metalloproteinase-1 plays a crucial role in the immunopathology of TB, causing breakdown of type I collagen and cavitation, but this collagenase is also potentially involved in bronchial epithelial repair. We hypothesized that the extracellular matrix (ECM) modulates M. tuberculosis-driven matrix metalloproteinase-1 expression by human bronchial epithelial cells (HBECs), regulating respiratory epithelial cell migration and repair. Medium from monocytes stimulated with M. tuberculosis induced collagenase activity in bronchial epithelial cells, which was reduced by ~87% when cells were cultured on a type I collagen matrix. Matrix metalloproteinase-1 had a focal localization, which is consistent with cell migration, and overall secretion decreased by 32% on type I collagen. There were no associated changes in the specific tissue inhibitors of metalloproteinases. Decreased matrix metalloproteinase-1 secretion was due to ligand-binding to the α2ÎČ1 integrin and was dependent on the actin cytoskeleton. In lung biopsies, samples from patients with pulmonary TB, integrin α2ÎČ1 is highly expressed on the bronchial epithelium. Areas of lung with disrupted collagen matrix showed an increase in matrix metalloproteinases-1 expression compared with areas where collagen was comparable to control lung. Type I collagen matrix increased respiratory epithelial cell migration in a wound-healing assay, and this too was matrix metalloproteinase-dependent, since it was blocked by the matrix metalloproteinase inhibitor GM6001. In summary, we report a novel mechanism by which α2ÎČ1-mediated signals from the ECM modulate matrix metalloproteinase-1 secretion by HBECs, regulating their migration and epithelial repair in TB

    Phosphorus bioavailability in soil profiles of a long-term fertilizer experiment: The evaluation of their bioaccessibility

    Get PDF
    Global agricultural productivity depends on the use of finite phosphorus (P) resources of which not only the topsoil, but also subsoil, can hold immense reserves. To assess potential soil contribution to plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications (control, triple superphosphate (TSP), compost, compost+TSP) for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify the chemical P speciation. Fertilized topsoils (21 to 69 kg P ha-1 a-1) showed P reserves larger by a factor of 1.2 to 1.4, and subsoil P reserves larger by a factor of 1.3 to 1.5 than those of the control. P-XANES revealed the predominance of inorganic P species such as moderately labile Fe- (46 to 92%), Al- (0 to 40%), and Ca- (0 to 15%) P compounds besides organic P (0 to 13%) in all treatments. The fertilizer application slightly altered P speciation throughout the profiles, but the type of fertilizer had no significant effect on it. Optimal plant growth requirements are restricted by the exchangeable P from the solid phase within the soil solution. Therefore, ongoing research focuses on the accessibility of P from P loaded amorphous Fe- and Al-hydroxides, previously identified as the predominant abiotic P forms. To assess their P desorption potential, P-33 rhizotron experiments combined with P-33 isotopic exchange kinetics (IEK) are underway. Preliminary results indicated that besides differences in P binding capacity of soil hydroxides, physical soil parameters, such as the matric potential, strongly control soil P availability, thus plant P acquisition rates can vary among different soil types. Our results gained new detailed information about P bioavailability under agricultural practice. The investigations towards P bioaccessibility may contribute to improved interpretation of soil P tests and reduced fertilizer recommendations

    ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response.

    Get PDF
    Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients

    SCOTROC 2B: feasibility of carboplatin followed by docetaxel or docetaxel–irinotecan as first-line therapy for ovarian cancer

    Get PDF
    The feasibility of combination irinotecan, carboplatin and docetaxel chemotherapy as first-line treatment for advanced epithelial ovarian carcinoma was assessed. One hundred patients were randomised to receive four 3-weekly cycles of carboplatin (area under the curve (AUC) 7) followed by four 3-weekly cycles of docetaxel 100 mg m−2 (arm A, n=51) or docetaxel 60 mg m−2 with irinotecan 200 mg m−2 (arm B, n=49). Neither arm met the formal feasibility criterion of an eight-cycle treatment completion rate that was statistically greater than 60% (arm A 71% (90% confidence interval (CI) 58–81%; P=0.079; arm B 67% (90% CI 55–78%; P=0.184)). Median-dose intensities were >85% of planned dose for all agents. In arms A and B, 15.6 and 12.2% of patients, respectively, withdrew owing to treatment-related toxicity. Grade 3–4 sensory neurotoxicity was more common in arm A (1.9 vs 0%) and grade 3–4 diarrhoea was more common in arm B (0.6 vs 3.5%). Of patients with radiologically evaluable disease at baseline, 50 and 48% responded to therapy in arms A and B, respectively; at median 17.1 months' follow-up, median progression-free survival was 17.1 and 15.9 months, respectively. Although both arms just failed to meet the formal statistical feasibility criteria, the observed completion rates of around 70% were reasonable. The addition of irinotecan to first-line carboplatin and docetaxel chemotherapy was generally well tolerated although associated with increased gastrointestinal toxicity. Further exploratory studies of topoisomerase-I inhibitors in this setting may be warranted

    Truck drivers' perceptions on wearable devices and health promotion:A qualitative study

    Get PDF
    Professional truck drivers, as other shift workers, have been identified as a high-risk group for various health conditions including cardiovascular disease, obesity, diabetes, sleep apnoea and stress. Mobile health technologies can potentially improve the health and wellbeing of people with a sedentary lifestyle such as truck drivers. Yet, only a few studies on health promotion interventions related to mobile health technologies for truck drivers have been conducted. We aimed to explore professional truck drivers views on health promotion delivered via mobile health technologies such as wearable devices.We conducted a phenomenological qualitative study, consisting of four semi-structured focus groups with 34 full-time professional truck drivers in the UK. The focus groups were audio-taped, transcribed verbatim and analysed using thematic content analysis. We discussed drivers perceptions of their health, lifestyle and work environment, and their past experience and expectations from mobile health technologies.The participants viewed their lifestyle as unhealthy and were aware of possible consequences. They expressed the need and wish to change their lifestyle, yet perceived it as an inherent, unavoidable outcome of their occupation. Current health improvement initiatives were not always aligned with their working conditions. The participants were generally willing to use mobile health technologies such as wearable devices, as a preventive measure to avoid prospect morbidity, particularly cardiovascular diseases. They were ambivalent about privacy and the risk of their employers monitoring their clinical data.Wearable devices may offer new possibilities for improving the health and wellbeing of truck drivers. Drivers were aware of their unhealthy lifestyle. They were interested in changing their lifestyle and health. Drivers raised concerns regarding being continuously monitored by their employer. Health improvement initiatives should be aligned with the unique working conditions of truck drivers. Future research is needed to examine the impact of wearable devices on improving the health and wellbeing of professional drivers

    Tumor Necrosis Factor (TNF) Bioactivity at the Site of an Acute Cell-Mediated Immune Response Is Preserved in Rheumatoid Arthritis Patients Responding to Anti-TNF Therapy

    Get PDF
    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, ÎČ-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1ÎČ, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response.

    Get PDF
    SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population

    Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition

    Get PDF
    It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO2 increased, but only marginally after high glucose exposure while oleate oxidation to CO2 decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets
    • 

    corecore