6,166 research outputs found

    Fragmentation of star-forming filaments in the X-shape Nebula of the California molecular cloud

    Full text link
    Dense molecular filaments are central to the star formation process, but the detailed manner in which they fragment into prestellar cores is not yet well understood. Here, we investigate the fragmentation properties and dynamical state of several star-forming filaments in the X-shape Nebula region of the California MC, in an effort to shed some light on this issue. We used multi-wavelength far-infrared images from Herschel and the getsources and getfilaments extraction methods to identify dense cores and filaments and derive their basic properties. We also used a map of 13CO(2−1)\rm ^{13}CO (2-1) emission from SMT 10m submillimeter telescope to constrain the dynamical state of the filaments. We identified 10 filaments, as well as 57 dense cores. Two star-forming filaments (# 8 and # 10) stand out in that they harbor quasi-periodic chains of dense cores with a typical projected core spacing of ∌\sim0.15 pc. These two filaments have thermally supercritical line masses and are not static. Filament~8 exhibits a prominent transverse velocity gradient, suggesting that it is accreting gas from the parent cloud gas reservoir. In both cases, the observed (projected) core spacing is similar to the filament width and significantly shorter than the canonical separation of ∌ \sim \,4 times the filament width predicted by classical cylinder fragmentation theory. We suggest that continuous accretion of gas onto the two star-forming filaments, as well as geometrical bending of the filaments, may account for the observed core spacing. Our findings suggest that the characteristic fragmentation lengthscale of molecular filaments is quite sensitive to external perturbations from the parent cloud, such as gravitational accretion of ambient material.Comment: 14 pages, 12 figures, accepted for publication in A&

    Edge Shear Flows and Particle Transport near the Density Limit in the HL-2A Tokamak

    Full text link
    Edge shear flow and its effect on regulating turbulent transport have long been suspected to play an important role in plasmas operating near the Greenwald density limit nG n_G . In this study, equilibrium profiles as well as the turbulent particle flux and Reynolds stress across the separatrix in the HL-2A tokamak are examined as nG n_G is approached in ohmic L-mode discharges. As the normalized line-averaged density nˉe/nG \bar{n}_e/n_G is raised, the shearing rate of the mean poloidal flow ωsh \omega_{\rm sh} drops, and the turbulent drive for the low-frequency zonal flow (the Reynolds power PRe \mathcal{P}_{Re} ) collapses. Correspondingly, the turbulent particle transport increases drastically with increasing collision rates. The geodesic acoustic modes (GAMs) gain more energy from the ambient turbulence at higher densities, but have smaller shearing rate than low-frequency zonal flows. The increased density also introduces decreased adiabaticity which not only enhances the particle transport but is also related to a reduction in the eddy-tilting and the Reynolds power. Both effects may lead to the cooling of edge plasmas and therefore the onset of MHD instabilities that limit the plasma density

    Monte Carlo Model for Studying the Effects of Melanin Concentrations on Retina Light Absorption

    Get PDF
    We developed a Monte Carlo model to calculate light absorption in human and mouse retinas. The retina was modeled as a five-layer spherical structure. The effects of melanin concentrations in the retinal pigment epithelium (RPE) and choroid layer were studied. Variations of blood content in choroid were also considered in the simulation. Our simulation results indicated that light absorption in neural retina was at least 20% higher in albino subjects than in pigmented subjects under both photobleaching and dark-adapted conditions. It can be four times higher at optical wavelengths corresponding to minimal hemoglobin absorption. The elevated absorption at neural retina was attributed to the light backscattered from the choroid and sclera layers. This simulation model may provide useful information in studying light-induced retina damage

    Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines

    Get PDF
    Author name used in this publication: De-Jian GuoAuthor name used in this publication: Peter Hoi-Fu Yu2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment

    Full text link
    © 2016 Elsevier Ltd. For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m2 h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m2 h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment

    Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT

    Full text link
    In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analyzed in terms of complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure

    A parabolic free boundary problem modeling electrostatic MEMS

    Get PDF
    The evolution problem for a membrane based model of an electrostatically actuated microelectromechanical system (MEMS) is studied. The model describes the dynamics of the membrane displacement and the electric potential. The latter is a harmonic function in an angular domain, the deformable membrane being a part of the boundary. The former solves a heat equation with a right hand side that depends on the square of the trace of the gradient of the electric potential on the membrane. The resulting free boundary problem is shown to be well-posed locally in time. Furthermore, solutions corresponding to small voltage values exist globally in time while global existence is shown not to hold for high voltage values. It is also proven that, for small voltage values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is rigorously justified
    • 

    corecore