52 research outputs found

    A new fault diagnosis method using deep belief network and compressive sensing

    Get PDF
    Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5 % accuracy for 25 % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods

    Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment

    Get PDF
    There is a current lack of mechanistic understanding on the relationships between a soil microbial community, crop production, and nutrient fertilization. Here, we combined ecological network theory with ecological resistance index to evaluate the responses of microbial community to additions of multiple inorganic and organic fertilizers, and their associations with wheat production in a 35-year field experiment. We found that microbial phylotypes were grouped into four major ecological clusters, which contained a certain proportions of fast-growers, copiotrophic groups, and potential plant pathogens. The application of combined inorganic fertilizers and cow manure led to the most resistant (less responsive) microbial community, which was associated with the highest levels of plant production, nutrient availability, and the lowest relative abundance of potential fungal plant pathogens after 35 years of nutrient fertilization. In contrast, microbial community was highly responsive (low resistance) to inorganic fertilization alone or plus wheat straw, which was associated with lower crop production, nutrient availability, and higher abundance of potential fungal plant pathogens. Our work demonstrates that the response of microbial community to long-term nutrient fertilizations largely regulates plant production in agricultural ecosystems, and suggests that manipulating these microbial phylotypes may offer a sustainable solution to the maintenance of field productivity under long-term nutrient fertilization scenarios. © 2019 The Author

    A new fault diagnosis method using deep belief network and compressive sensing

    Get PDF
    Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5 % accuracy for 25 % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods

    Suppressed N fixation and diazotrophs after four decades of fertilization

    Get PDF
    Background: N fixation is one of the most important microbially driven ecosystem processes on Earth, allowing N to enter the soil from the atmosphere, and regulating plant productivity. A question that remains to be answered is whether such a fundamental process would still be that important in an over-fertilized world, as the long-term effects of fertilization on N fixation and associated diazotrophic communities remain to be tested. Here, we used a 35-year fertilization experiment, and investigated the changes in N fixation rates and the diazotrophic community in response to long-term inorganic and organic fertilization. Results: It was found that N fixation was drastically reduced (dropped by 50%) after almost four decades of fertilization. Our results further indicated that functionality losses were associated with reductions in the relative abundance of keystone and phylogenetically clustered N fixers such as Geobacter spp. Conclusions: Our work suggests that long-term fertilization might have selected against N fixation and specific groups of N fixers. Our study provides solid evidence that N fixation and certain groups of diazotrophic taxa will be largely suppressed in a more and more fertilized world, with implications for soil biodiversity and ecosystem functions

    Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China.

    No full text
    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982-2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput -0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols

    Iterative Learning Control with Forgetting Factor for Linear Distributed Parameter Systems with Uncertainty

    No full text
    Iterative learning control is an intelligent control algorithm which imitates human learning process. Based on this concept, this paper discussed iterative learning control problem for a class parabolic linear distributed parameter systems with uncertainty coefficients. Iterative learning control algorithm with forgetting factor is proposed and the conditions for convergence of algorithm are established. Combining the matrix theory with the basic theory of distributed parameter systems gives rigorous convergence proof of the algorithm. Finally, by using the forward difference scheme of partial differential equation to solve the problems, the simulation results are presented to illustrate the feasibility of the algorithm

    Study on compaction mechanism of overconsolidated soil and critical groundwater level in Cangzhou

    No full text
    Cangzhou area is facing increasingly serious land subsidence problem caused by groundwater overexploitation during a long time. In order to make effectively use of water resource and to limit the development of subsidence, it is necessary to establish the warning critical water level, that is, the subsidence rate will increase significantly as the water level depths exceeds the critical groundwater levels. In this paper, the 3rd aquifer group, the main groundwater exploitation layer, has been taken as a research object. The critical water level is calculated by stress analysis, and then determined by the correlation between the monitoring data of groundwater levels and subsidence. The calculated results indicate good consistency

    Study on compaction mechanism of overconsolidated soil and critical groundwater level in Cangzhou

    No full text
    Cangzhou area is facing increasingly serious land subsidence problem caused by groundwater overexploitation during a long time. In order to make effectively use of water resource and to limit the development of subsidence, it is necessary to establish the warning critical water level, that is, the subsidence rate will increase significantly as the water level depths exceeds the critical groundwater levels. In this paper, the 3rd aquifer group, the main groundwater exploitation layer, has been taken as a research object. The critical water level is calculated by stress analysis, and then determined by the correlation between the monitoring data of groundwater levels and subsidence. The calculated results indicate good consistency

    Effects of different regimes of fertilization on soil organic matter under conventional tillage

    Get PDF
    To explore the effects of different fertilization regimes on soil organic matter (SOM) sequestration in a wintersoybean/ corn rotation, a long-term field experiment was conducted in Anhui, China, from 1982 to 2011. There were six treatments, as follows: (1) no fertilizer input (CK); (2) mineral fertilizers input (NPK); (3) mineral fertilizers + 3,750 kg ha�1 wheat straw (WS/2-NPK); (4) mineral fertilizers + 7,500 kg ha�1 wheat straw (WS-NPK); (5) mineral fertilizers + 15,000 kg ha�1 composted farmyard manure (CNPK); and (6) mineral fertilizers + 30,000 kg ha�1 composted farmyard manure (DNPK). Mineral fertilizer applications combined with organic amendments improved soil physical properties. For the WS/2-NPK, WS-NPK, CNPK and DNPK treatments, the soil bulk density decreased more than 10%, while the air porosity and field water content increased more than 90% and 15%, compared with the values at the start of the experiment in 1982. Our results indicate that about two decades are needed for SOM to reach its saturation point in all treatments. The SOM sequestration rate was related to the fertilization regime. The average SOM sequestration rate in 1982-2005 was 0.27 g kg�1 yr�1 with NPK, 0.45 g kg�1 yr�1 with WS/2-NPK, 0.56 g kg�1 yr�1 with WS-NPK, 0.60 g kg�1 yr�1 with CNPK and 1.02 g kg�1 yr�1 with DNPK. Therefore, both the quantity and the quality of the organic amendment determine the SOM sequestration rate and SOM saturation leve
    corecore