289 research outputs found

    Rumba : a Python framework for automating large-scale recursive internet experiments on GENI and FIRE+

    Get PDF
    It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters’ importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inferenc

    Spatially Penalised Registration of Multivariate Functional Data

    Full text link
    Registration of multivariate functional data involves handling of both cross-component and cross-observation phase variations. Allowing for the two phase variations to be modelled as general diffeomorphic time warpings, in this work we focus on the hitherto unconsidered setting where phase variation of the component functions are spatially correlated. We propose an algorithm to optimize a metric-based objective function for registration with a novel penalty term that incorporates the spatial correlation between the component phase variations through a kriging estimate of an appropriate phase random field. The penalty term encourages the overall phase at a particular location to be similar to the spatially weighted average phase in its neighbourhood, and thus engenders a regularization that prevents over-alignment. Utility of the registration method, and its superior performance compared to methods that fail to account for the spatial correlation, is demonstrated through performance on simulated examples and two multivariate functional datasets pertaining to EEG signals and ozone concentrations. The generality of the framework opens up the possibility for extension to settings involving different forms of correlation between the component functions and their phases

    Development and Validation of A Rapid LC-MS/MS Method forTthe Determination of JCC76, A Novel Antitumor Agent for Breast Cancer, in Rat Plasma and Its Application to A Pharmacokinetics Study

    Get PDF
    JCC76 is a novel nimesulide analog that selectively inhibits the human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer cell proliferation and tumor progression. To support further pharmacological and toxicological studies of JCC76, a novel and rapid method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been developed and validated for the quantification of the compound in rat plasma. A C18 column was used for chromatographic separation, and the mobile phase was aqueous ammonium formate (pH 3.7; 5 mm)–methanol (1:9, v/v) with an isocratic elution. With a simple liquid–liquid extraction procedure using the mixture of methyl tert-butyl ether–hexane (1:2, v/v), the mean extraction efficiency of JCC76 in rat plasma was determined as 89.5–97.3% and no obvious matrix effect was observed. This method demonstrated a linear calibration range from 0.3 to 100 ng/mL for JCC76 in rat plasma and a small volume of sample consumption. The intra- and inter-assay accuracy and precision were within ±10%. The pharmacokinetics of JCC76 was also profiled using this validated method in rats. In conclusion, this rapid and sensitive method has been proven to effectively quantify JCC76 for pharmacokinetics study

    Quantifying the uneven efficiency benefits of ridesharing market integration

    Full text link
    Ridesharing is recognized as one of the key pathways to sustainable urban mobility. With the emergence of Transportation Network Companies (TNCs) such as Uber and Lyft, the ridesharing market has become increasingly fragmented in many cities around the world, leading to efficiency loss and increased traffic congestion. While an integrated ridesharing market (allowing sharing across TNCs) can improve the overall efficiency, how such benefits may vary across TNCs based on actual market characteristics is still not well understood. In this study, we extend a shareability network framework to quantify and explain the efficiency benefits of ridesharing market integration using available TNC trip records. Through a case study in Manhattan, New York City, the proposed framework is applied to analyze a real-world ridesharing market with 3 TNCs−-Uber, Lyft, and Via. It is estimated that a perfectly integrated market in Manhattan would improve ridesharing efficiency by 13.3%, or 5% of daily TNC vehicle hours traveled. Further analysis reveals that (1) the efficiency improvement is negatively correlated with the overall demand density and inter-TNC spatiotemporal unevenness (measured by network modularity), (2) market integration would generate a larger efficiency improvement in a competitive market, and (3) the TNC with a higher intra-TNC demand concentration (measured by clustering coefficient) would benefit less from market integration. As the uneven benefits may deter TNCs from collaboration, we also illustrate how to quantify each TNC's marginal contribution based on the Shapley value, which can be used to ensure equitable profit allocation. These results can help market regulators and business alliances to evaluate and monitor market efficiency and dynamically adjust their strategies, incentives, and profit allocation schemes to promote market integration and collaboration

    Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The regulation of protein phosphorylation requires a balance in the activity of protein kinases and protein phosphatases. Our previous data indicates that Src can increase ERK activity through Raf kinase in response to ischemic stimuli. This study examined the molecular mechanisms by which Src activates ERK cascade through protein phosphatases following cerebral ischemia.</p> <p>Results</p> <p>Ischemia-induced Src activation is followed by phosphorylation of PP2A at Tyr307 leading to its inhibition in the rat hippocampus. SU6656, a Src inhibitor, up-regulates PP2A activity, resulting in a significant decreased activity in ERK and its targets, CREB and ERα. In addition, the PP2A inhibitor, cantharidin, led to an up-regulation of ERK activity and was able to counteract Src inhibition during ischemia.</p> <p>Conclusion</p> <p>Src induces up-regulation of ERK activity and its target transcription factors, CREB and ERα, through attenuation of PP2A activity. Therefore, activation of ERK is the result of a crosstalk between two pathways, Raf-dependent positive regulators and PP2A-dependent negative regulators.</p
    • …
    corecore