498 research outputs found
Simple Memristive SPICE Macro-Models and Reconfigurability in Filter and Antenna
Simple current- and voltage-controlled memristive circuit macro-models using SPICE are proposed to capture the nonlinear hysteresis loop behaviors in this paper. Different current-voltage characteristics are investigated by applying sinusoidal-wave, triangular-wave and square-wave source, respectively. Furthermore, using finite-difference time-domain (FDTD) emulator incorporated with a SPICE circuit solver, the current- or voltage-controlled memristive SPICE model is embedded into a planar microwave bandstop filter (BSF) and an ultra-wideband (UWB) monopole antenna, which connects two ends of the half-wavelength open-loop resonator and two sides of the U-slot in the radiating patch, respectively. The reconfigurability of the BSF and antenna notched band can be achieved by switching the states of the memristor
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
A minimum single-band model for low-energy excitations in superconducting KFeSe
We propose a minimum single-band model for the newly discovered iron-based
superconducting KFeSe. Our model is found to be numerically
consistent with the five-orbital model at low energies. Based on our model and
the random phase approximation, we study the spin fluctuation and the pairing
symmetry of superconducting gap function. The spin excitation
and the pairing symmetry are revealed. All of the results can
well be understood in terms of the interplay between the Fermi surface topology
and the local spin interaction, providing a sound picture to explain why the
superconducting transition temperature is as high as to be comparable to those
in pnictides and some cuprates. A common origin of superconductivity is
elucidated for this compound and other high-T materials.Comment: 5 pages, 4 figure
Asymmetric Fluid Criticality II: Finite-Size Scaling for Simulations
The vapor-liquid critical behavior of intrinsically asymmetric fluids is
studied in finite systems of linear dimensions, , focusing on periodic
boundary conditions, as appropriate for simulations. The recently propounded
``complete'' thermodynamic scaling theory incorporating pressure
mixing in the scaling fields as well as corrections to scaling
, is extended to finite , initially in a grand
canonical representation. The theory allows for a Yang-Yang anomaly in which,
when , the second temperature derivative,
, of the chemical potential along the phase
boundary, , diverges when T\to\Tc -. The finite-size
behavior of various special {\em critical loci} in the temperature-density or
plane, in particular, the -inflection susceptibility loci and the
-maximal loci -- derived from where -- is carefully elucidated and
shown to be of value in estimating \Tc and \rhoc. Concrete illustrations
are presented for the hard-core square-well fluid and for the restricted
primitive model electrolyte including an estimate of the correlation exponent
that confirms Ising-type character. The treatment is extended to the
canonical representation where further complications appear.Comment: 23 pages in the two-column format (including 13 figures) This is Part
II of the previous paper [arXiv:cond-mat/0212145
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
Search for the Lepton Flavor Violation Processes and
The lepton flavor violation processes and are
searched for using a sample of 5.8 events collected with
the BESII detector. Zero and one candidate events, consistent with the
estimated background, are observed in and
decays, respectively. Upper limits on the branching ratios are determined to be
and at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Observation of the decay \psip\rar\kstark
Using 14 million events collected with the BESII detector,
branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to
be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and
\calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The
results confirm the violation of the "12%" rule for these two decay channels
with higher precision. A large isospin violation between the charged and
neutral modes is observed.Comment: 5 pages, 3 figure
- …