5 research outputs found

    MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning

    Full text link
    Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-RL) has showcased the power of leveraging RL at the meta-level to mitigate manual fine-tuning of low-level black-box optimizers. However, this field is hindered by the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first benchmark platform expressly tailored for developing and evaluating MetaBBO-RL methods. MetaBox offers a flexible algorithmic template that allows users to effortlessly implement their unique designs within the platform. Moreover, it provides a broad spectrum of over 300 problem instances, collected from synthetic to realistic scenarios, and an extensive library of 19 baseline methods, including both traditional black-box optimizers and recent MetaBBO-RL methods. Besides, MetaBox introduces three standardized performance metrics, enabling a more thorough assessment of the methods. In a bid to illustrate the utility of MetaBox for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is open-source and accessible at: https://github.com/GMC-DRL/MetaBox.Comment: Accepted at NuerIPS 202

    Major and Trace Element Geochemistry of Dayakou Vanadium-Dominant Emerald from Malipo (Yunnan, China): Genetic Model and Geographic Origin Determination

    No full text
    Emerald from the deposit at Dayakou is classified as a vanadium-dominant emerald together with Lened, Muzo, Mohmand, and Eidsvoll emeralds. Although previous studies defined these V-dominant emeralds and traced the genesis of the Dayakou deposit, there has not been any systematic comparison or discrimination on V-dominant emeralds from these deposits. The origin of the parental fluid and the crystallization process of the Dayakou emerald remain controversial. In this study, both major and trace element signatures of 34 V-dominant samples from Dayakou are analyzed through electron microprobe analysis (EMPA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Dayakou emeralds are characterized by high ratios of V/Cr and the enrichment of Li, Cs, W, Sn, and As. These geochemical fingerprints indicate a parental fluid of an Early Cretaceous early-stage granitic fluid associated with Laojunshan granite. The considerable concentration variation of Rb, Cs, Ga and the presence of V-rich oxy-schorl-dravite inclusions in a color zoned sample suggest two generations of emerald precipitation. Thus, a more detailed idealized mineralization model for the Dayakou deposit is proposed. A series of plots, such as Rb vs. Cs, V vs. V/Cr, LILE vs. CTE, and Li vs. Sc, are constructed to discriminate the provenance of V-dominant emeralds

    Mannoside recognition and degradation by bacteria

    No full text
    corecore