1,130 research outputs found

    Topography affects grassland heterogeneity

    Get PDF
    Non-Peer ReviewedDetermining and monitoring ecosystem heterogeneity and biodiversity is important for grassland management and can be carried out through remote sensing such as satellite images. However, in rolling landscapes, biophysical properties of ecosystems, the indicators of heterogeneity and biodiversity are highly scale and location dependent and little research is reported on how topography affects biophysical properties of ecosystems quantitatively. The objective of this study is to examine how topography affects spatial biophysical variation using statistics and a wavelet approach in the mixed grassland ecosystem, Saskatchewan, Canada. Field leaf area index (LAI) was collected with an LAI-2000 instrument and topographical data were measured using a total station along five paralleled transects. Results showed that biophysical spatial variation is highly topography-controlled, and the wavelet approaches can be used to identify the spatial heterogeneity of a grassland ecosystem at different scales. This study suggests the potentials of using readily-available topography data to guide the ecosystems management and selection of the resolution of satellite images

    Predicted Infrared and Raman Spectra for Neutral Ti_8C_12 Isomers

    Full text link
    Using a density-functional based algorithm, the full IR and Raman spectra are calculated for the neutral Ti_8C_12 cluster assuming geometries of Th, Td, D2d and C3v symmetry. The Th pentagonal dodecahedron is found to be dynamically unstable. The calculated properties of the relaxed structure having C3v symmetry are found to be in excellent agreement with experimental gas phase infrared results, ionization potential and electron affinity measurements. Consequently, the results presented may be used as a reference for further experimental characterization using vibrational spectroscopy.Comment: 6 pages, 5 figures. Physical Review A, 2002 (in press

    KamLAND Bounds on Solar Antineutrinos and neutrino transition magnetic moments

    Get PDF
    We investigate the possibility of detecting solar electron antineutrinos with the KamLAND experiment. These electron antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. KamLAND is sensitive to antineutrinos originated from solar 8{}^8B neutrinos. From KamLAND negative results after 145 days of data taking, we obtain model independent limits on the total flux of solar electron antineutrinos $\Phi({}^8 B)< 1.1-3.5\times 10^4 cm^{-2}\ s^{-1},morethanoneorderofmagnitudesmallerthanexistinglimits,andontheirappearanceprobability, more than one order of magnitude smaller than existing limits, and on their appearance probability P<0.15%(95antineutrinoproductionbyspinflavorprecession,thisupperboundimpliesanupperlimitontheproductoftheintrinsicneutrinomagneticmomentandthevalueofthesolarmagneticfield (95% CL). Assuming a concrete model for antineutrino production by spin-flavor precession, this upper bound implies an upper limit on the product of the intrinsic neutrino magnetic moment and the value of the solar magnetic field \mu B< 2.3\times 10^{-21}MeV95LMA MeV 95% CL (for LMA (\Delta m^2, \tan^2\theta)values).Limitsonneutrinotransitionmomentsarealsoobtained.Forrealisticvaluesofotherastrophysicalsolarparameterstheseupperlimitswouldimplythattheneutrinomagneticmomentisconstrainedtobe,inthemostconservativecase, values). Limits on neutrino transition moments are also obtained. For realistic values of other astrophysical solar parameters these upper limits would imply that the neutrino magnetic moment is constrained to be, in the most conservative case, \mu\lsim 3.9\times 10^{-12} \mu_B(95CL)forarelativelysmallfield (95% CL) for a relatively small field B= 50kG.Forhighervaluesofthemagneticfieldweobtain: kG. For higher values of the magnetic field we obtain: \mu\lsim 9.0\times 10^{-13} \mu_Bforfield for field B= 200kGand kG and \mu\lsim 2.0\times 10^{-13} \mu_Bforfield for field B= 1000$ kG at the same statistical significance.Comment: 13 pages, 2 figure

    Estimativa da área foliar do pepino em ambiente protegido por medidas lineares sob salinidade e enxertia

    Get PDF
    The measurement of leaf area by linear parameters is a useful tool when plants cannot be destroyed for direct measurement. The objectives of this study were to establish equations to estimate the leaf area of greenhouse-cucumber and to evaluate the effects of salinity and grafting on this estimative. Non-grafted cucumber seedlings, cv. 'Hokushin', were transplanted in a greenhouse and were irrigated with water of different salinities (1.0, 3.2 and 5.0 dS m-1). In the second growing period, the same cultivar was grafted on Cucurbita spp. and the plants were irrigated with water of 1.4, 3.0 and 5.3 dS m-1. Leaves of different sizes were collected from both experiments and leaf area was determined by an integrating area meter. Leaf length (L) and width (W) were also recorded. An equation for estimating the leaf area from L and W was developed for a given salinity level or grafting condition and estimated well the area of leaves collected in the other treatments. The leaf area (LA) of cucumber 'Hokushin' could be estimated using the equation LA = 0.88LW - 4.27, for any grafting and salinity conditions.A determinação da área foliar por medidas lineares é uma ferramenta útil quando as plantas não podem ser destruídas para que a medição direta seja realizada. Os objetivos desse trabalho foram definir equações para a estimativa da área foliar do pepino em ambiente protegido e avaliar os efeitos da salinidade e da a enxertia nessa estimativa. Mudas de pepino, cv. 'Hokushin', não enxertadas, foram transplantadas em um ambiente protegido e irrigadas com água de diferentes salinidades (1,0, 3,2 e 5,0 dS m-1). No segundo período de cultivo, a mesma cultivar foi enxertada sobre Cucurbita spp., sendo as plantas irrigadas com água de 1,4, 3,0 e 5,3 dS m-1. Foram coletadas folhas de diferentes tamanhos dos dois cultivos e dos três tratamentos e a área foliar foi determinada por um medidor de área foliar. O comprimento (C) e a largura (L) da folha também foram registrados. Desenvolveram-se equações pelas quais a área foliar pôde ser estimada a partir de medidas de C e L. A equação desenvolvida para um dado nível de salinidade ou condição de enxertia estimou bem a área das folhas coletadas nos demais tratamentos. A área foliar (AF) do pepino 'Hokushin' pode ser estimada pela função AF = 0,88CL - 4,27, para qualquer condição de enxertia e salinidade

    Large-area freestanding gold nanomembranes with nanoholes

    Get PDF
    Thin metal films with nanohole arrays have opened up new opportunities in applications ranging from plasmonics to optoelectronics. However, their dependence on substrates limits not only their performance but also other application possibilities. A key challenge to overcome this limitation is to make these nanostructured films substrate-free. Here we report large-area freestanding gold nanomembranes with nanohole arrays fabricated using a replication-releasing procedure. The structures maintain spatial uniformity and pristine quality after release across the entire membrane up to 75 cm2 in area and as thin as 50 nm. The freestanding nanomembranes show significantly enhanced optical transmission and effective field extension compared to the same nanomembranes on substrates. A plasmonic coupling resonance with a 2.7 nm linewidth achieves a record figure-of-merit of 240 for refractive index sensing. The gold nanomembranes can be geometrically converted to 3D microstructures by ion-irradiation-based kirigami technique. The transformed micro-objects can be precisely controlled via geometry design and strategic cutting. Furthermore, we find the presence of nanoholes can significantly change the in-plane modulus of the gold nanomembranes. Finally, the freestanding gold nanomembranes can be transferred to non-planar substrates, enabling their future integration with advanced optical and electronic systems for emerging applications.Peipei Jia, Kamil Zuber, Qiuquan Guo, Brant C. Gibson, Jun Yang and Heike Ebendorff-Heideprie

    Study of the f2(1270)f_2(1270), f2(1525)f_2'(1525), f0(1370)f_0(1370) and f0(1710)f_0(1710) in the J/ψJ/\psi radiative decays

    Get PDF
    In this paper we present an approach to study the radiative decay modes of the J/ψJ/\psi into a photon and one of the tensor mesons f2(1270)f_2(1270), f2(1525)f'_2(1525), as well as the scalar ones f0(1370)f_0(1370) and f0(1710)f_0(1710). Especially we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson--vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.Comment: The large Nc argument improved; version published in EPJA

    Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials

    Full text link
    We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter Γ\Gamma(=VV"V2=\frac{V V"}{V'^2}) as a function of another potential parameter λ\lambda(=VκV3/2=\frac{V'}{\kappa V^{3/2}}), which correspondingly extends the analysis of the evolution of our universe from two-dimensional autonomous dynamical system to the three-dimension. It allows us to investigate the more general situation where the potential is not restricted to inverse square potential and .One result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function Γ(λ)\Gamma(\lambda) equals 3/23/2 for one or some values of λ\lambda_{*} as well as the parameter λ\lambda_{*} satisfies condition Eq.(18) or Eq.(19). We also find that for a class of different potentials the dynamics evolution of the universe are actually the same and therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal C(2010), online first, http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=

    A Note on Inflation with Tachyon Rolling on the Gauss-Bonnet Brane

    Full text link
    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of Lidsey and Nunes, astro-ph/0303168, for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal.Comment: RevTex4, 5 pages, no figures, Minor clarifications added and references updated, To appear in PR

    Tachyonic Inflation in a Warped String Background

    Full text link
    We analyze observational constraints on the parameter space of tachyonic inflation with a Gaussian potential and discuss some predictions of this scenario. As was shown by Kofman and Linde, it is extremely problematic to achieve the required range of parameters in conventional string compactifications. We investigate if the situation can be improved in more general compactifications with a warped metric and varying dilaton. The simplest examples are the warped throat geometries that arise in the vicinity of of a large number of space-filling D-branes. We find that the parameter range for inflation can be accommodated in the background of D6-branes wrapping a three-cycle in type IIA. We comment on the requirements that have to be met in order to realize this scenario in an explicit string compactification.Comment: Latex, JHEP class, 20 pages, 4 figures. v2: references added, small error in section 7 corrected, published versio

    Stability, Electronic Structure and Vibrational Modes of Ti_8C_12 Dimer

    Full text link
    We present our density functional results of the geometry, electronic structure and dissociation energy of Ti_8C_12 dimer. We show that as opposed to the currently held view that Ti_8C_12 are highly stable monodispersed clusters, the neutral Ti_8C_12 clusters form covalent bonds and form stable dimers. We determine that the Ti atoms bond weakly (0.9 eV/bond) to organic ligands such as ammonia. Alternatively the Met-Car dimer has a cohesive energy of 4.84 eV or approximately 1.2 eV per bond. While Met-Car dimers are stable, formation of these dimers may be quenched in an environment that contains a significant population of organic ligands. The ionization and dissociation energies of the dimer are of same order which prevents the observation of the dimer in the ion mass spectroscopy. The analysis of the vibrational frequencies show the lowest-energy structure to be dynamically stable. We also present infrared absorption and Raman scattering spectra of the Ti_8C_12 dimer.Comment: 5 pages, 3 figures (Better quality figures available on request). Physical Review B (Rapid Communication) (2002, in press
    corecore