19 research outputs found
The TRIM-NHL protein NHL-2 is a Novel Co-Factor of the CSR-1 and HRDE-1 22G-RNA Pathways [preprint]
Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma
Different modes of interaction by TIAR and HuR with target RNA and DNA
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2′-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways
Non-fibrillar components of amyloid deposits mediate the self-association and tangling of amyloid fibrils
Amyloid deposits are proteinaceous extra-cellular aggregates associated with a diverse range of disease states. These deposits are composed predominantly of amyloid fibrils, the unbranched, beta-sheet rich structures that result from the misfolding and subsequent aggregation of many proteins. In addition, amyloid deposits contain a number of non-fibrillar components that interact with amyloid fibrils and are incorporated into the deposits in their native folded state. The influence of a number of the non-fibrillar components in amyloid-related diseases is well established; however, the mechanisms underlying these effects are poorly understood. Here we describe the effect of two of the most important non-fibrillar components, serum amyloid P component and apolipoprotein E, upon the solution behavior of amyloid fibrils in an in vitro model system. Using analytical ultracentrifugation, electron microscopy, and rheological measurements, we demonstrate that these non-fibrillar components cause soluble fibrils to condense into localized fibrillar aggregates with a greatly enhanced local density of fibril entanglements. These results suggest a possible mechanism for the observed role of non-fibrillar components as mediators of amyloid deposition and deposit stability
Insight into the selectivity of the G7-18NATE inhibitor peptide for the Grb7-SH2 domain target
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors
Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator
Phenol
and its derivatives are common pollutants that are present
in industrial discharge and are major xenobiotics that lead to water
pollution. To monitor as well as improve water quality, attempts have
been made in the past to engineer bacterial <i>in vivo</i> biosensors. However, due to the paucity of structural information,
there is insufficiency in gauging the factors that lead to high sensitivity
and selectivity, thereby impeding development. Here, we present the
crystal structure of the sensor domain of MopR (MopR<sup>AB</sup>)
from <i>Acinetobacter calcoaceticus</i> in complex with
phenol and its derivatives to a maximum resolution of 2.5 Å.
The structure reveals that the N-terminal residues 21–47 possess
a unique fold, which are involved in stabilization of the biological
dimer, and the central ligand binding domain belongs to the “nitric
oxide signaling and golgi transport” fold, commonly present
in eukaryotic proteins that bind long-chain fatty acids. In addition,
MopR<sup>AB</sup> nests a zinc atom within a novel zinc binding motif,
crucial for maintaining structural integrity. We propose that this
motif is crucial for orchestrated motions associated with the formation
of the effector binding pocket. Our studies reveal that residues W134
and H106 play an important role in ligand binding and are the key
selectivity determinants. Furthermore, comparative analysis of MopR
with XylR and DmpR sensor domains enabled the design of a MopR binding
pocket that is competent in binding DmpR-specific ligands. Collectively,
these findings pave way towards development of specific/broad based
biosensors, which can act as useful tools for detection of this class
of pollutants
Rapid Elaboration of Fragments into Leads Applied to Bromodomain-3 Extra Terminal Domain
The development of low-affinity fragment hits into higher affinity leads is a major hurdle in fragment-based drug design. Here we demonstrate an approach for the Rapid Elaboration of Fragments into Leads (REFiL) applying an integrated workflow that provides a systematic approach to generate higher-affinity binders without the need for structural information. The workflow involves the selection of commercial analogues of fragment hits to generate preliminary structure-activity relationships. This is followed by parallel microscale chemistry using chemoinformatically designed reagent libraries to rapidly explore chemical diversity. Upon completion of a fragment screen against Bromodomain-3 extra terminal (BRD3-ET) domain we applied the REFiL workflow, which allowed us to develop a series of tetrahydrocarbazole ligands that bind to the peptide binding site of BRD3-ET. With REFiL we were able to rapidly improve binding affinity >30-fold. The REFiL workflow can be applied readily to a broad range of protein targets without the need of a structure, allowing the efficient evolution of low-affinity fragments into higher affinity leads and chemical probes.<br /
Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation
Analytical ultracentrifugation (AUC) was used to characterize the size distribution and surface chemistry of quantum dots (QDs). AUC was found to be highly sensitive to nanocrystai size, resolving nanocrystal sizes that differ by a single lattice plane. Sedimentation velocity data were used to calculate the ligand packing density at the crystal surface for different sized nanocrystals. Dihydrolipoic acid poly(ethylene glycol) was found to bind between 66 and 60% of the surface cadmium atoms for CdSe nanocrystals in the 1.54-2.59 nm radius size regime. The surface ligand chemistry was found to affect QD sedimentation, with larger ligands decreasing the sedimentation rate through an increase in particle volume and increase in frictional coefficient. Finally, AUC was used to detect and analyze protein association to QDs. Addition of bovine serum albumin (BSA) to the QD sample resulted in a reduced sedimentation rate, which may be attributed to an associated frictional drag. We calculated that one to two BSA molecules bind per QD with an associated frictional ratio of 1.2
Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis
Lymphatic vascular development establishes embryonic and adult tissue fluid balance and is integral in disease. In diverse vertebrate organs, lymphatic vessels display organotypic function and develop in an organ-specific manner. In all settings, developmental lymphangiogenesis is considered driven by vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3), whereas a role for VEGFR2 remains to be fully explored. Here, we define the zebrafish Vegf/Vegfr code in receptor binding studies. We find that while Vegfd directs craniofacial lymphangiogenesis, it binds Kdr (a VEGFR2 homolog) but surprisingly, unlike in mammals, does not bind Flt4 (VEGFR3). Epistatic analyses and characterization of a kdr mutant confirm receptor-binding analyses, demonstrating that Kdr is indispensible for rostral craniofacial lymphangiogenesis, but not caudal trunk lymphangiogenesis, in which Flt4 is central. We further demonstrate an unexpected yet essential role for Kdr in inducing lymphatic endothelial cell fate. This work reveals evolutionary divergence in the Vegf/Vegfr code that uncovers spatially restricted mechanisms of developmental lymphangiogenesis. Lymphatic vessels display organotypic function and develop in an organ-specific manner. Vogrin et al. find that the zebrafish Kdr receptor is indispensible for craniofacial, but not trunk, lymphangiogenesis whereas Flt4 is essential for the latter. Thus, vascular endothelial growth factor (VEGF) receptor signaling pathways are differentially employed in different tissues to drive developmental lymphangiogenesis
Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7
The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (K(D) = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (K(D) > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development