75 research outputs found

    LINT, a Novel dL(3)mbt-Containing Complex, Represses Malignant Brain Tumour Signature Genes

    Get PDF
    Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access

    TESS delivers its first Earth-sized planet and a warm sub-Neptune

    Get PDF
    The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be 2.61−0.16+0.17^{+0.17}_{-0.16} R⊕R_{\oplus}, and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7−1.9+2.222.7^{+2.2}_{-1.9} M⊕M_{\oplus}. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 R⊕R_{\oplus} with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized (Rp=0.892−0.058+0.064R⊕R_p = 0.892^{+0.064}_{-0.058} R_{\oplus}) planet from TESS. The HD21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.Comment: Published in ApJ Letters; 5 figures, 1 tabl

    GJ 1252 b: A 1.2 R⊕ Planet Transiting an M3 Dwarf at 20.4 pc

    Get PDF
    We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 R and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 M, 0.391 ± 0.020 R) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M ⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system's short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization

    The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 ÎŒm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of 1.144-0.061+0.062R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T eq ∌ 269 K). TOI-700 also hosts two small inner planets (R b = 1.037-0.064+0.065R⊕and R c = 2.65-0.15+0.16R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ∌70 cm s-1)

    Transit timings variations in the three-planet system : TOI-270

    Get PDF
    We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of ∌10 min and a super-period of ∌3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of Mb=1.48±0.18M⊕⁠, Mc=6.20±0.31M⊕⁠, and Md=4.20±0.16M⊕ for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets : eb = 0.0167 ± 0.0084, ec = 0.0044 ± 0.0006, and ed = 0.0066 ± 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry

    Get PDF

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link

    The TESS View of LOFAR Radio-emitting Stars

    Get PDF
    The recent detection of the M dwarf GJ 1151 at 144 MHz low radio frequencies using LOFAR has been interpreted as evidence of an exoplanet magnetically interacting with its host star. This would be the first exoplanet detected around a main-sequence star by a radio telescope. Radial velocity confirmation of such a planet has proven inconclusive and it remains possible that the radio emission could be generated by a stellar coronal process. Using data from TESS, we shed light on this question by probing the stellar activity and flares of GJ 1151 as well as 14 other M dwarfs detected by LOFAR. GJ 1151 and three other star–planet interaction candidates are found to be inactive, with no rotational modulation and few, if any, flares. The remainder of the LOFAR-detected M dwarfs flare frequently. We consider it unlikely that stellar activity is responsible for the bright, circularly polarized emission from GJ 1151 and its three analogs and support the star–planet magnetic interaction interpretation

    The Youngest Planet to Have a Spin-Orbit Alignment Measurement AU Mic b

    No full text
    We report measurements of the sky-projected spin-orbit angle for AU Mic b, a Neptune-size planet orbiting a very young (similar to 20 Myr) nearby pre-main-sequence M-dwarf star, which also hosts a bright, edge-on, debris disk. The planet was recently discovered from preliminary analysis of radial-velocity observations and confirmed to be transiting its host star from photometric data from the NASA's TESS mission. We obtained radial-velocity measurements of AU Mic over the course of two partially observable transits and one full transit of planet b from high-resolution spectroscopic observations made with the Minerva-Australis telescope array. Only a marginal detection of the Rossiter-McLaughlin effect signal was obtained from the radial velocities, in part due to AU Mic being an extremely active star and the lack of full transit coverage plus sufficient out-of-transit baseline. As such, a precise determination of the obliquity for AU Mic b is not possible in this study and we find a sky-projected spin-orbit angle of lambda=47(-54)(+26)degrees. This result is consistent with both the planet's orbit being aligned or highly misaligned with the spin axis of its host star. Our measurement independently agrees with, but is far less precise than observations carried out on other instruments around the same time that measure a low-obliquity orbit for the planet. AU Mic is the youngest exoplanetary system for which the projected spin-orbit angle has been measured, making it a key data point in the study of the formation and migration of exoplanets-particularly given that the system is also host to a bright debris disk
    • 

    corecore