5,303 research outputs found
Magnetoswitching of current oscillations in diluted magnetic semiconductor nanostructures
Strongly nonlinear transport through Diluted Magnetic Semiconductor
multiquantum wells occurs due to the interplay between confinement, Coulomb and
exchange interaction. Nonlinear effects include the appearance of spin
polarized stationary states and self-sustained current oscillations as possible
stable states of the nanostructure, depending on its configuration and control
parameters such as voltage bias and level splitting due to an external magnetic
field. Oscillatory regions grow in size with well number and level splitting. A
systematic analysis of the charge and spin response to voltage and magnetic
field switching of II-VI Diluted Magnetic Semiconductor multiquantum wells is
carried out. The description of stationary and time-periodic spin polarized
states, the transitions between them and the responses to voltage or magnetic
field switching have great importance due to the potential implementation of
spintronic devices based on these nanostructures.Comment: 14 pages, 4 figures, Revtex, to appear in PR
Trapping effects on inflation
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
Pattern Competition in the Photorefractive Semiconductors
We analytically study the photorefractive Gunn effect in n-GaAs subjected to
two external laser beams which form a moving interference pattern (MIP) in the
semiconductor. When the intensity of the spatially independent part of the MIP,
denoted by , is small, the system has a periodic domain train (PDT),
consistent with the results of linear stability analysis. When is large,
the space-charge field induced by the MIP will compete with the PDT and result
in complex dynamics, including driven chaos via quasiperiodic route
QSO clustering and the AAT 2dF redshift survey
We review previous results on the clustering and environments of QSOs. We
show that the correlation length for QSOs derived from existing surveys is
r~5/h Mpc, similar to the observed correlation length for field galaxies at the
present epoch. The galaxy environment for z<1 radio-quiet QSOs is also
consistent with field galaxies. The evolution of the QSO correlation length
with redshift is currently uncertain, largely due to the small numbers of QSOs
(~2000) in surveys suitable for clustering analysis. We report on intial
progress with the AAT 2dF QSO redshift survey, which, once completed will
comprise almost 30000 QSOs. With over 1000 QSOs already observed, it is already
the largest single homogeneous QSO survey. We discuss prospects for deriving
limits on cosmological parameters from this survey, and on the evolution of
large-scale structure in the Universe.Comment: Invited talk at RS meeting on 'Large Scale Structure in the Universe'
held at the Royal Society on 25-26 March 1998 14 pages, 11 figre
Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations
During the transition from a neutral to a fully reionized universe,
scattering of cosmic microwave background (CMB) photons via free-electrons
leads to a new anisotropy contribution to the temperature distribution. If the
reionization process is inhomogeneous and patchy, the era of reionization is
also visible via brightness temperature fluctuations in the redshifted 21 cm
line emission from neutral Hydrogen. Since regions containing electrons and
neutral Hydrogen are expected to trace the same underlying density field, the
two are (anti) correlated and this is expected to be reflected in the
anisotropy maps via a correlation between arcminute-scale CMB temperature and
the 21 cm background. In terms of the angular cross-power spectrum,
unfortunately, this correlation is insignificant due to a geometric
cancellation associated with second order CMB anisotropies. The same
cross-correlation between ionized and neutral regions, however, can be studied
using a bispectrum involving large scale velocity field of ionized regions from
the Doppler effect, arcminute scale CMB anisotropies during reionization, and
the 21 cm background. While the geometric cancellation is partly avoided, the
signal-to-noise ratio related to this bispectrum is reduced due to the large
cosmic variance related to velocity fluctuations traced by the Doppler effect.
Unless the velocity field during reionization can be independently established,
it is unlikely that the correlation information related to the relative
distribution of ionized electrons and regions containing neutral Hydrogen can
be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure
- …