19 research outputs found

    Mixed Effect Modeling of Dose and Linear Energy Transfer Correlations With Brain Image Changes After Intensity Modulated Proton Therapy for Skull Base Head and Neck Cancer

    Get PDF
    Purpose Intensity modulated proton therapy (IMPT) could yield high linear energy transfer (LET) in critical structures and increased biological effect. For head and neck cancers at the skull base this could potentially result in radiation-associated brain image change (RAIC). The purpose of the current study was to investigate voxel-wise dose and LET correlations with RAIC after IMPT. Methods and Materials For 15 patients with RAIC after IMPT, contrast enhancement observed on T1-weighted magnetic resonance imaging was contoured and coregistered to the planning computed tomography. Monte Carlo calculated dose and dose-averaged LET (LETd) distributions were extracted at voxel level and associations with RAIC were modelled using uni- and multivariate mixed effect logistic regression. Model performance was evaluated using the area under the receiver operating characteristic curve and precision-recall curve. Results An overall statistically significant RAIC association with dose and LETd was found in both the uni- and multivariate analysis. Patient heterogeneity was considerable, with standard deviation of the random effects of 1.81 (1.30-2.72) for dose and 2.68 (1.93-4.93) for LETd, respectively. Area under the receiver operating characteristic curve was 0.93 and 0.95 for the univariate dose-response model and multivariate model, respectively. Analysis of the LETd effect demonstrated increased risk of RAIC with increasing LETd for the majority of patients. Estimated probability of RAIC with LETd = 1 keV/µm was 4% (95% confidence interval, 0%, 0.44%) and 29% (95% confidence interval, 0.01%, 0.92%) for 60 and 70 Gy, respectively. The TD15 were estimated to be 63.6 and 50.1 Gy with LETd equal to 2 and 5 keV/µm, respectively. Conclusions Our results suggest that the LETd effect could be of clinical significance for some patients; LETd assessment in clinical treatment plans should therefore be taken into consideration.publishedVersio

    Mixed Effect Modeling of Dose and Linear Energy Transfer Correlations With Brain Image Changes After Intensity Modulated Proton Therapy for Skull Base Head and Neck Cancer

    Get PDF
    Purpose Intensity modulated proton therapy (IMPT) could yield high linear energy transfer (LET) in critical structures and increased biological effect. For head and neck cancers at the skull base this could potentially result in radiation-associated brain image change (RAIC). The purpose of the current study was to investigate voxel-wise dose and LET correlations with RAIC after IMPT. Methods and Materials For 15 patients with RAIC after IMPT, contrast enhancement observed on T1-weighted magnetic resonance imaging was contoured and coregistered to the planning computed tomography. Monte Carlo calculated dose and dose-averaged LET (LETd) distributions were extracted at voxel level and associations with RAIC were modelled using uni- and multivariate mixed effect logistic regression. Model performance was evaluated using the area under the receiver operating characteristic curve and precision-recall curve. Results An overall statistically significant RAIC association with dose and LETd was found in both the uni- and multivariate analysis. Patient heterogeneity was considerable, with standard deviation of the random effects of 1.81 (1.30-2.72) for dose and 2.68 (1.93-4.93) for LETd, respectively. Area under the receiver operating characteristic curve was 0.93 and 0.95 for the univariate dose-response model and multivariate model, respectively. Analysis of the LETd effect demonstrated increased risk of RAIC with increasing LETd for the majority of patients. Estimated probability of RAIC with LETd = 1 keV/µm was 4% (95% confidence interval, 0%, 0.44%) and 29% (95% confidence interval, 0.01%, 0.92%) for 60 and 70 Gy, respectively. The TD15 were estimated to be 63.6 and 50.1 Gy with LETd equal to 2 and 5 keV/µm, respectively. Conclusions Our results suggest that the LETd effect could be of clinical significance for some patients; LETd assessment in clinical treatment plans should therefore be taken into consideration

    Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis

    No full text
    <div><p>Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which <i>ERCC1</i>, <i>XRCC1</i>, and <i>MTHFR</i> were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included <i>TP53</i>, <i>CTNNB1</i>, <i>MYC</i>, <i>RB1</i>, P38 MAPK, and <i>EP300</i>. Additionally, uracil degradation II (reductive) and thymine degradation pathways (<i>p</i> = 1.06<sup>−08</sup>) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was <i>RB1</i> (rs2227311, <i>p</i>-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological processes, including pathways related to inflammation and oxidative stress, that are relevant to mucositis development, thus providing the basis for future studies to improve the management and treatment of mucositis in patients with cancer.</p></div

    Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation.

    Get PDF
    Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.This work was supported by the European Research Council Grant New-Chol (L.V., A.O., R.T.), the INTENS EuFP8 grant (DO), British Heart Foundation PhD Studentship as part of the BHF Oxbridge Centre of Regenerative Medicine (G.C.), Gates PhD scholarship (B.W.), NIH P40 OD011102 (LGR), Cambridge Hospitals National Institute for Health Research Biomedical Research Center (L.V., S.B.) and a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute
    corecore