691 research outputs found

    Co doping induced structural and optical properties of sol-gel prepared ZnO thin films

    Get PDF
    Cataloged from PDF version of article.The preparation conditions for Co doping process into the ZnO structure were studied by the ultrasonic spray pyrolysis technique. Structural and optical properties of the Co:ZnO thin films as a function of Co concentrations were examined. It was observed that hexagonal wurtzite structure of ZnO is dominant up to the critical value, and after the value, the cubic structural phase of the cobalt oxide appears in the X-ray diffraction patterns. Every band-edge of Co:ZnO films shifts to the lower energies and all are confirmed with the PL measurements. Co substitution in ZnO lattice has been proved by the optical transmittance measurement which is observed as the loss of transmission appearing in specific region due to Co2+ characteristic transitions. © 2014 Elsevier B.V. All rights reserved

    Sinus Node Dysfunction as the First Manifestation of Left Ventricular Noncompaction with Multiple Cardiac Abnormalities

    Get PDF
    AbstractLeft ventricular noncompaction (LVNC) is a genetically heterogenous form of cardiomyopathy which may remain undiagnosed till adulthood due to the late presentation of typical symptoms such as dyspnea, congestion, ventricular arrhythmias and thromboembolism. Symptomatic bradycardia secondary to persistent sinus node dysfunction is very rare. Coexistent cardiac defects are common in children however in adults the disease is usually in isolated form. Here, we present a case of twenty-three year-old female LVNC patient with patent ductus arteriosus, bicuspid aortic valve and persistent sinus node dysfunction who presented with dizziness as the first manifestation of the disease

    Electromigration-Induced Propagation of Nonlinear Surface Waves

    Full text link
    Due to the effects of surface electromigration, waves can propagate over the free surface of a current-carrying metallic or semiconducting film of thickness h_0. In this paper, waves of finite amplitude, and slow modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their dispersion relation. If the film material is isotropic, a wave train with wavelength lambda is unstable if lambda/h_0 < 3.9027..., and is otherwise marginally stable. The equation of motion for slow modulations of a finite amplitude, periodic wave train is shown to be the nonlinear Schrodinger equation. As a result, envelope solitons can travel over the film's surface.Comment: 13 pages, 2 figures. To appear in Phys. Rev.

    Reading Comprehension, Figurative Language Instruction, and the Turkish English Language Learner

    Get PDF
    According to the 2000 U.S. Census, the Turkish-speaking population in the United States increased significantly in the 1990s and has risen steadily over time. Today, the highest concentration is located in the states of New York, California, New Jersey, and Florida. Kaya (2003) reported a geographical dispersion across the U.S., from New York to Alaska, with the wealthiest living in Florida. Turkish students make up the ninth largest student population in the U.S. and the largest percentage of students compared to their homeland population. This article identifies and explores many of these challenges by observing the transition of Hakan, a Turkish-speaking fifth grade student, as he encounters a new culture and learns a new language. In particular, we focus on the acquisition of figurative language in a Turkish-speaking English Language Learner (ELL). Some issues and questions addressed in the article include effective methodologies for the assessment of figurative language acquisition in the Turkish and English languages, effective instructional strategies to scaffold Turkish-speaking English Language Learners’ (ELLs) acquisition of figurative language, and linguistic factors that might affect Turkish-speaking students’ transition to English. The article sets forth theoretical underpinnings for the chosen assessment and instructional strategies, as well as a summary of supporting research in the area of Turkish-speaking ELLs

    A synthesis-based approach to compressive multi-contrast magnetic resonance imaging

    Get PDF
    In this study, we deal with the problem of image reconstruction from compressive measurements of multi-contrast magnetic resonance imaging (MRI). We propose a synthesis based approach for image reconstruction to better exploit mutual information across contrasts, while retaining individual features of each contrast image. For fast recovery, we propose an augmented Lagrangian based algorithm, using Alternating Direction Method of Multipliers (ADMM). We then compare the proposed algorithm to the state-of-the-art Compressive Sensing-MRI algorithms, and show that the proposed method results in better quality images in shorter computation time. © 2017 IEEE

    Synthesis of a hexafluoropropylidene-bis(phthalic anhydride)-based polyimide and its conducting polymer composites with polypyrrole

    Get PDF
    A new electrically conducting composite film from polypyrrole and 4,4′(hexafluoroisopropylidene)-bis(phthalic anhydride)-based polyimide was prepared. Pyrrole and the dopant ion can easily penetrate through the polyimide substrate and electropolymerize on the platinum (Pt) electrode due to the swelling of the polyimide on the metal electrode. The electrochemical properties of polypyrrole-polyimide (PPy/PI ) composite films have been investigated by using cyclic voltammetry. The PPy/PI composite film is suitable for use as the electroactive material owing to its stable and controllable electrochemical properties. The electrical conductivity of composites falls in the range 0.0035-15 S/cm. Scanning electron micrograph, FTIR, and thermal studies indicate that PPy and PI form a homogeneous material rather than a simple mixture. © 1997 John Wiley & Sons, Inc

    High-Stability, High-Efficiency Organic Monoliths Made of Oligomer Nanoparticles Wrapped in Organic Matrix

    Get PDF
    Oligomer nanoparticles (OL NPs) have been considered unsuitable for solid-state lighting due to their low quantum yields and low temperature stability of their emission. Here, we address these problems by forming highly emissive and stable OL NPs solids to make them applicable in lighting. For this purpose, we incorporated OL NPs into sucrose matrix and then prepared their all-organic monoliths. We show that wrapping the OL NPs in sucrose significantly increases their quantum yield up to 44%, while the efficiency of their dispersion and direct solid-film remain only at ∼6%. We further showed ∼3-fold improved temperature stability of OL NP emission within these monoliths. Our experiments revealed that a physical passivation mechanism is responsible from these improvements. As a proof-of-concept demonstration, we successfully employed these high-stability, high-efficiency monoliths as color converters on a blue LED chip. Considering the improved optical features, low cost, and simplicity of the presented methodology, we believe that this study holds great promise for a ubiquitous use of organic OL NPs in lighting and possibly in other photonic applications. © 2016 American Chemical Society

    Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    Get PDF
    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. © 2017 Gucluler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore