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ABSTRACT

In this study, we deal with the problem of image reconstruc-
tion from compressive measurements of multi-contrast mag-
netic resonance imaging (MRI). We propose a synthesis based
approach for image reconstruction to better exploit mutual
information across contrasts, while retaining individual fea-
tures of each contrast image. For fast recovery, we propose
an augmented Lagrangian based algorithm, using Alternating
Direction Method of Multipliers (ADMM). We then compare
the proposed algorithm to the state-of-the-art Compressive
Sensing-MRI algorithms, and show that the proposed method
results in better quality images in shorter computation time.

Index Terms— Multi-Contrast Magnetic Resonance
Imaging, Compressive Sensing, ADMM

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is an imaging modal-
ity that allows high resolution imaging of soft tissues using
non-ionizing radiation. In clinical usage, multiple type of
scans that produce different contrast images are typically used
for diagnosis. While each contrast image has different fea-
tures, a significant amount of structural correlation exists be-
tween different contrast images. Furthermore, the imaging
process is inherently slow due to imaging physics, making
multi-contrast imaging not only costly, but also uncomfort-
able to the patient, and even impractical in some cases.

Compressive sensing (CS) is a signal processing approach
that enables reconstruction of signals from under-sampled
measurements [1, 2]. It relies on sparsity of the signal in
a transformation domain, and the decrease in sparsity level
improves the reconstructed image quality. Although CS has
been successfully applied to MRI [1, 3, 4], exploiting corre-
lated features in multi-contrast MRI (MC-MRI) is a relatively
new research direction [3].

Alternating direction method of multipliers (ADMM)
techniques have been successfully applied to signal and
image recovery problems [5]. ADMM uses a divide-and-
conquer approach by splitting unconstrained multi-objective
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convex optimization problems, augmenting the Lagrangian
with a norm-squared error term, and using a nonlinear block
Gauss-Seidel approach on the terms in the sub-problems. The
resulting algorithm exhibits guaranteed convergence under
mild conditions [5]. Various algorithms within the ADMM
framework have proven useful in the context of imaging
with applications in Synthetic Aperture Radar using a similar
model to MRI [6]. These algorithms are especially effective
where a fast transform is available for relating the unknown
image to the observation vector, such as with Fast Fourier
Transforms.

Here we propose a synthesis based approach to multi-
contrast MRI problem. We use an ADMM based algorithm
for fast image recovery of compressive multi-contrast MRI.
The algorithm reconstructs each contrast image as a sum of
two parts, correlated and independent, and solves for each
part by minimizing a hybrid cost function using the respec-
tive objective functions. This is based on ¢;-synthesis based
approach in the literature [2, 7]. Then, we compare our al-
gorithm to the state-of-the-art techniques in terms of image
quality, peak signal-to-noise-ratio (pSNR), and computation
time.

2. OBSERVATION MODEL

Many imaging techniques assume physical models based on
linear operators, in relating image vector x € C¥ to the ob-
servation vector y € CM. The observation matrix B is then
an element of CM*¥ Including the noise vector n € CM,
the problem has the following model:

y =Bx+n, (1

where n is typically from a normal distribution. Moreover,
some imaging applications deal with a multi-channel recon-
struction problem. Even though the input data from different
channels or contrasts have different data vectors, joint recon-
struction of these channels often increases performance [3, 8],
since the underlying anatomy is the same. For channel i, the
governing equation is denoted by

v = Blx() | (), @)

where y, B(®, x(") and n(?) denote the same variables as
in Eq. (1), for respective channels. In this study we tackle



the problem of joint image reconstruction from MC-MRI
data. We use the joint reconstruction approach for MC-MRI
by treating Proton-Density (PD), T1-weighted (T1w), T2-
weighted (T2w) images as different channel data [3]. For
MRI, the observation matrix B is the linear operator asso-
ciated with partial Fourier observations.

3. METHOD

In this section, we first describe the proposed synthesis-based
approach, then propose an efficient algorithm for the solution.

3.1. Approach

Synthesis and analysis are two common approaches to image
recovery problems [7]. Compressive sensing guarantees exact
reconstruction for analysis based approaches, even with re-
dundant dictionaries [2]. Although it is previously applied in
the compressive sensing framework, well-known boundaries
for exact recovery are not yet established for synthesis model
[2, 9, 7]. In this work, we show that synthesis based approach
to multi-contrast MRI improves the quality of reconstructed
images over alternative approaches.

Previous work has shown that the joint reconstruction of
multi-contrast images improves image quality. In this work,
we assume that each contrast image (x(?)) is sum of two com-
ponents as correlated (xgl)) and independent (xg)), such that
x() = xgi) + xgi). We impose joint objective functions on the
correlated parts, and individual objectives on the independent
parts. Let us now formulate the problem as:

mi)I(lliI}cnge a1 fi (x1) + aafa (x1) + Big1 (x2) + P2g2 (X2)
subject to ||B(i)(xgi) —|—x(2i)) —yD|s<e,ie{l, -k}

3

for k contrasts, f1, f5 are separable objective functions for x1,
and g1, g2 are separable objective functions for x5. Here we
use f1, fo as joint objective functions and g1, g2 as individual
penalty functions while other choices are also possible.

We use the ADMM framework to solve the problem
shown in (3), which is converted to the general ADMM form:

minimize  ¢1(x) + $2(2) @
subje;ctto Gx+Qz—-r=0,
o[BI 11 0 0
Let G = [(B(i))H 00 I 1 ,Q =1, and
) ) ) ) T
20 = [z00T 2607 60T for all i € {1,--+,k}.

We define G as a block-diagonal matrix with diagonal en-
tries consisting of G;’s. This setting ensures that z(*9) =

B® (Xgi) n xé“), Z(01) — Xgi)’ 2(12) — Xgi)7 2(13) — Xgi)’

and z(%) = xg).

697

Algorithm 1: Multi-Contrast Synthesis-ADMM
(&,1) d(l DI

1. Setn = 0, choose 1 > 0, z,
foralli € {1,---,k},t € {0, -+ ,4}.
2. repeat

.parfori=1,--- |k

3
4. Update xgi) using (9)
5. Update xg) using (10)
6

200 = w, o(or®) (B<> (X xl )) —dﬁj-ﬂ))

7,0 7,0 i 7 '3 0
a6 = af — BO (= 1) 142,
8. endfor
9. parfort=1,2
10. { (it) — ‘I’f o ( (1) (z,t))} e

1. d%8 =al? — x4 20 )foralltz

n+1 = n+1°
12. {z(z,t+2) _ 'I'gt% (X2 _d(z,t+2))}l .
13 a%? = altt? — x4 20 for all 17
14. endfor
15.nn+1

16. until some stopping criterion is satisfied.

We can then set the data fidelity constraint on z(»?) vec-
tors for each contrast, and each separable constraint on the
dual variable. For constraint, we use a previous approach [5]
and impose the constraint using the same ¢, 1y (24))
for each contrast <.

To impose the objective functions, we set ¢1(x) = 0, and

$2(z) = a1 fu ({Z(M)}i_l,--- k) tasfs <{Z(i,2)}i_1,-<~ k)
+61g1 ({Z(i’g)}i:hw) + B292 ({Z(M)}i:L...,k)
+ 3 e (49). ®
i=1

3.2. Fast Solution

In this section, we describe a fast implementation of the al-
gorithm, and present the associated update steps. Using the
variable splitting procedure as given in sec. 3.1, we reach Al-
gorithm 1. The following update equations can be used for a
fast implementation of the algorithm.

Z (lt)+d1t (6)



Data(Ratio) | FCSA-MT | recPF | IADMM | Proposed
AB(25%) 24.87 32.52 33.08 33.57

AB(12.5%) 22.54 27.03 27.09 28.29
SR(25%) 46.04 35.54 39.69 46.84

SR(6.25%) 30.46 27.62 28.12 32.22

Table 1: Average pSNR values in dB for FCSA-MT, recPF,
Individual ADMM and Proposed Method

4
2 = Y ol 4 al ™
t=3

a) =B (x4 £(2) 42 (200 +a0) @)

x{) = 51“%’1) - g(B( NHql) ©

xy) = orli? - S(BO)Hq) (10)
1 1.

BOxi” = 5B — 2qf) (11
i) (2 1 i) .. (i 1 i

B! )xg) = §B( )r(2) gqu) (12)

Operations defined through (6) to (12) can be carried out us-
ing 3 FFTs per iteration per contrast. The z-update step can be
decomposed into sub-problems for each objective function as
described in [6], and their respective proximal mapping func-
tions can be used to carry out these steps. The resulting steps
are summarized in Algorithm 1.

4. RESULTS

We set f1(-) to Color Total Variation (CTV) [8], fa(v) to
group sparsity function as ||v|2,1, ¢1(-) to sum of isotropic
Total Variation (TV) functions for each contrast [5], and
g2(v) = >, [[v*]l1. We use Chambolle’s algorithm [5] for
TV and CTYV related functions and exact solutions for /-
norm based sparsity functions as proximal mappings.
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Fig. 1: pSNR and SSIM values with respect to cumulative
computation time for competing methods.

We implemented Algorithm 1 in MATLAB, where group
Chambolle projections ran within a mex function. We com-
pared the algorithm with other compressive sensing MRI al-
gorithms. The experiments were conducted on a workstation
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with two Intel Xeon E5-2650 v2 CPU’s and 64 GB of RAM.
All z((f’w values were initialized to the zero-filling recon-

structions, defined as zgi’t) = B)Hy® fort =1,--- 4,

zéi’o) =y and all Lagrangian variables d((f’t) were initial-

ized to zero vectors. All images were normalized to [0, 255],
All

and the step size parameter p was selected as 0.01.
algorithms were run for 100 seconds.

FCSA-MT Reference

recPF

Individual

Proposed

Fig. 2: The contrasts from left to right: Proton Density (PD),
T1-weighted (T1w), T2-weighted (T2w) images for BP with

25% of the full data available.
First, we ran Monte Carlo simulations on FCSA-MT [3],

Individual ADMM reconstructions using the algorithm in
[6], recPF (reconstruction from partial Fourier observations)
[4], and the proposed method, using different data subsam-
pling patterns in each run. MATLAB codes provided by
the authors of the respective methods were used for other
algorithms for comparison, in which recPF was also im-
plemented using a mex function for TV calculation. Two
different complex-valued image data-sets were used; Aubert-
Broche brain phantom (AB) [10], subsampled by 25% and
12.5%, and the SRI24 atlas (SR) [3], subsampled by 25%
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Fig. 3: Division of images as correlated and independent.
Scales were adjusted to [0, 200] for all images for compar-
ison.

and 6.25%. All three contrasts were subsampled at the same
rates within each experiment, and noise was added. Param-
eters of all algorithms were optimized for highest structural
similarity index measure (SSIM). For the proposed method,
parameters were selected as: ayry = 0.0159, age, = 1.59,
Brv = 0.0092, ,, = 0.92. For ¢;, we simulated an MRI
acquisition with no RF excitation to acquire noise, then, set
€; to the ¢5-norm of the collected sample noise vector.

Figure 1 shows the reconstruction structural-similarity-
index-measure (SSIM) and peak signal-to-noise ratio (pSNR)
performance for all algorithms with respect to time, which
was calculated using the cputime routine provided in MAT-
LAB. The proposed method outperforms competing methods
and has the fastest convergence speed with the highest pSNR.
The result of Monte Carlo simulations can be found in Ta-
ble I, which shows that the proposed method has higher per-
formance on average.

Next, we analyze the reconstructed images in terms of
quality. Figure 2 shows that FCSA-MT [3] results in noise-
like artifacts, while recPF [4] results in an overly smoothed
reconstruction. Individual method produces a relatively nois-
ier image especially for the PD image. The proposed method
has better overall quality in comparison.

Figure 3 shows the division of images as correlated and
independent. Consistent with the cost functions imposed on
each, similar features of contrast images were gathered in the
correlated parts of the images, and individual distinctive fea-
tures were gathered in independent parts.

5. CONCLUSIONS

In this study, we proposed a novel synthesis based approach to
multi-contrast magnetic resonance imaging, and presented a
fast solution. The method separates the image into two com-
ponents, and imposes joint objective functions on one part
while imposing individual objective functions on the other.
We solve the resulting problem using ADMM. We also de-
rived the necessary equations for the fast implementation of
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the method. We then show the effectiveness of the algorithm
on two different complex and noisy sets of data in terms of
both pSNR and computation time.
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