121 research outputs found

    An optimal transport theory based approach for efficient dispatch of transactions in energy markets

    No full text
    Abstract Nowadays, transactive energy markets (TEMs) are emerging as interesting frameworks in deregulated power markets to control the balance of supply and demand in the entire electrical network. Due to wide deployment of renewable energy resources, grid connected micro‐grids, and open access transmission and distribution networks, the planning and operation of TEMs become complex. So, an efficient optimal dispatch model for TEMs should be developed to achieve the objectives of TEMs, such as feasible sizes of transactions and optimal dispatch of these transactions with minimal operating costs. The transactive dispatch problem is similar to the resource allocation/matching problem. Recently, optimal transport (OT) has received significant attention in various fields including optimization theory and resource matching problems due to its potency and relevance in modeling and optimization. An OT‐based approach is proposed here for optimal dispatch of transactions in energy markets while minimizing the cost of transactions considering the operating constraints of the system. The proposed approach can efficiently determine the feasible sizes of transactions without any security issues. The optimal solutions of the OT‐based approach are obtained using a Sinkhorn iterative technique. Also, the load uncertainties are considered in this work to analyse the impacts of load uncertainties on the optimal dispatch of transactions. The numerical simulation results on the modified IEEE 9‐bus system, modified IEEE 57‐bus system, modified IEEE 118‐bus system, and Indian Northern Regional Power Grid (NRPG) system illustrate the efficacy of the proposed OT‐based framework

    Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications

    No full text
    Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review’s primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly
    • 

    corecore