1,072 research outputs found

    Three-Body Encounters of Black Holes in Globular Clusters

    Get PDF
    Evidence has been mounting for the existence of black holes with masses from 10^2 to 10^4 M_Solar associated with stellar clusters. Such intermediate-mass black holes (IMBHs) will encounter other black holes in the dense cores of these clusters. The binaries produced in these interactions will be perturbed by other objects as well thus changing the orbital characteristics of the binaries. These binaries and their subsequent mergers due to gravitational radiation are important sources of gravitational waves. We present the results of numerical simulations of high mass ratio encounters, which help clarify the interactions of intermediate-mass black holes in globular clusters and help determine what types of detectable gravitational wave signatures are likely.Comment: 4 pages, 3 figures to appear in the proceedings of The Astrophysics of Gravitational Wave Sources, College Park, MD, 24-26 April 200

    X-ray Spectral and Variability Properties of Low-Mass AGN

    Get PDF
    We study the X-ray properties of a sample of 14 optically-selected low-mass AGN whose masses lie within the range 1E5 -2E6 M(solar) with XMM-Newton. Only six of these low-mass AGN have previously been studied with sufficient quality X-ray data, thus, we more than double the number of low-mass AGN observed by XMM-Newton with the addition of our sample. We analyze their X-ray spectral properties and variability and compare the results to their more massive counterparts. The presence of a soft X-ray excess is detectable in all five objects which were not background dominated at 2-3 keV. Combined with previous studies, this gives a total of 8 low-mass AGN with a soft excess. The low-mass AGN exhibit rapid, short-term variability (hundreds to thousands of seconds) as well as long-term variability (months to years). There is a well-known anti-correlation between black hole mass and variability amplitude (normalized excess variance). Comparing our sample of low-mass AGN with this relation we find that all of our sample lie below an extrapolation of the linear relation. Such a flattening of the relation at low masses (below about 1E6 M(solar)) is expected if the variability in all AGN follows the same shape power spectrum with a break frequency that is dependent on mass. Finally, we also found two objects that show significant absorption in their X-ray spectrum, indicative of type 2 objects, although they are classified as type 1 AGN based on optical spectra.Comment: 12 pages, 5 figures, 7 tables, accepted for publication in MNRA

    Three-Body Dynamics with Gravitational Wave Emission

    Full text link
    We present numerical three-body experiments that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading order terms of energy loss from gravitational waves. We simulate binary-single interactions and show that close approach cross sections for three 1 solar mass objects are unchanged from the purely Newtonian dynamics except for close approaches smaller than 1.0e-5 times the initial semimajor axis of the binary. We also present cross sections for mergers resulting from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios including those of interest for intermediate-mass black holes (IMBHs). Building on previous work, we simulate sequences of high-mass-ratio three-body encounters that include the effects of gravitational radiation. The simulations show that the binaries merge with extremely high eccentricity such that when the gravitational waves are detectable by LISA, most of the binaries will have eccentricities e > 0.9 though all will have circularized by the time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected from the host cluster for each black hole accreted onto the growing IMBH.Comment: 34 pages, 14 figures, minor corrections to match version accepted by Ap

    Swift/UVOT grism monitoring of NGC 5548 in 2013: an attempt at MgII reverberation mapping

    Full text link
    Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the Hβ\beta line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when Hβ\beta is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Study of multi black hole and ring singularity apparent horizons

    Full text link
    We study critical black hole separations for the formation of a common apparent horizon in systems of NN - black holes in a time symmetric configuration. We study in detail the aligned equal mass cases for N=2,3,4,5N=2,3,4,5, and relate them to the unequal mass binary black hole case. We then study the apparent horizon of the time symmetric initial geometry of a ring singularity of different radii. The apparent horizon is used as indicative of the location of the event horizon in an effort to predict a critical ring radius that would generate an event horizon of toroidal topology. We found that a good estimate for this ring critical radius is 20/(3π)M20/(3\pi) M. We briefly discuss the connection of this two cases through a discrete black hole 'necklace' configuration.Comment: 31 pages, 21 figure

    Scheduling in a three-machine robotic flexible manufacturing cell

    Get PDF
    Cataloged from PDF version of article.In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new robot move cycle which is a direct consequence of process and operational flexibility of CNC machines.We prove that this proposed cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles.We also present a worst case performance bound of using this proposed cycle. 2005 Elsevier Ltd. All rights reserved

    Dft And X-ray Study Of Structural, Electronic, Elastic And Optical Properties In Be1–xznxs Alloys Depending On Vegard’s Law

    Get PDF
    Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement
    corecore