We present numerical three-body experiments that include the effects of
gravitational radiation reaction by using equations of motion that include the
2.5-order post-Newtonian force terms, which are the leading order terms of
energy loss from gravitational waves. We simulate binary-single interactions
and show that close approach cross sections for three 1 solar mass objects are
unchanged from the purely Newtonian dynamics except for close approaches
smaller than 1.0e-5 times the initial semimajor axis of the binary. We also
present cross sections for mergers resulting from gravitational radiation
during three-body encounters for a range of binary semimajor axes and mass
ratios including those of interest for intermediate-mass black holes (IMBHs).
Building on previous work, we simulate sequences of high-mass-ratio three-body
encounters that include the effects of gravitational radiation. The simulations
show that the binaries merge with extremely high eccentricity such that when
the gravitational waves are detectable by LISA, most of the binaries will have
eccentricities e > 0.9 though all will have circularized by the time they are
detectable by LIGO. We also investigate the implications for the formation and
growth of IMBHs and find that the inclusion of gravitational waves during the
encounter results in roughly half as many black holes ejected from the host
cluster for each black hole accreted onto the growing IMBH.Comment: 34 pages, 14 figures, minor corrections to match version accepted by
Ap