91 research outputs found

    Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD

    Get PDF
    The objective of the present study was to determine the association between CT phenotypes—emphysema by low attenuation area and bronchitis by airway wall thickness—and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10 in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness is positively associated with fat mass index in both subjects with and without COPD

    Genome-wide association study of smoking behaviours in patients with COPD

    Get PDF
    Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and COPD severity. Previous genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) and a dopamine beta-hydroxylase (DBH) locus associated with smoking cessation in multiple populations. Objective To identify SNPs associated with lifetime average and current CPD, age at smoking initiation, and smoking cessation in patients with COPD. Methods GWAS were conducted in four independent cohorts encompassing 3441 ever-smoking patients with COPD (Global Initiative for Obstructive Lung Disease stage II or higher). Untyped SNPs were imputed using the HapMap (phase II) panel. Results from all cohorts were meta-analysed. Results Several SNPs near the HLA region on chromosome 6p21 and in an intergenic region on chromosome 2q21 showed associations with age at smoking initiation, both with the lowest p=2x10(-7). No SNPs were associated with lifetime average CPD, current CPD or smoking cessation with p<10(-6). Nominally significant associations with candidate SNPs within cholinergic receptors, nicotinic, alpha 3/5 (CHRNA3/CHRNA5; eg, p=0.00011 for SNP rs1051730) and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6; eg, p=2.78x10(-5) for a non-synonymous SNP rs1801272) regions were observed for lifetime average CPD, however only CYP2A6 showed evidence of significant association with current CPD. A candidate SNP (rs3025343) in DBH was significantly (p=0.015) associated with smoking cessation. Conclusion The authors identified two candidate regions associated with age at smoking initiation in patients with COPD. Associations of CHRNA3/CHRNA5 and CYP2A6 loci with CPD and DBH with smoking cessation are also likely of importance in the smoking behaviours of patients with COPD

    Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease

    Get PDF
    Background: Chronic bronchitis (CB) is one of the classic phenotypes of COPD. The aims of our study were to investigate genetic variants associated with COPD subjects with CB relative to smokers with normal spirometry, and to assess for genetic differences between subjects with CB and without CB within the COPD population. Methods: We analyzed data from current and former smokers from three cohorts: the COPDGene Study; GenKOLS (Bergen, Norway); and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). CB was defined as having a cough productive of phlegm on most days for at least 3 consecutive months per year for at least 2 consecutive years. CB COPD cases were defined as having both CB and at least moderate COPD based on spirometry. Our primary analysis used smokers with normal spirometry as controls; secondary analysis was performed using COPD subjects without CB as controls. Genotyping was performed on Illumina platforms; results were summarized using fixed-effect meta-analysis. Results: For CB COPD relative to smoking controls, we identified a new genome-wide significant locus on chromosome 11p15.5 (rs34391416, OR = 1.93, P=4.99× 10-8) as well as significant associations of known COPD SNPs within FAM13A. In addition, a GWAS of CB relative to those without CB within COPD subjects showed suggestive evidence for association on 1q23.3 (rs114931935, OR = 1.88, P= 4.99 ×10-7). Conclusions: We found genome-wide significant associations with CB COPD on 4q22.1 (FAM13A) and 11p15.5 (EFCAB4A, CHID1 and AP2A2), and a locus associated with CB within COPD subjects on 1q23.3 (RPL31P11 and ATF6). This study provides further evidence that genetic variants may contribute to phenotypic heterogeneity of COPD.publishedVersio

    X chromosome associations with chronic obstructive pulmonary disease and related phenotypes: an X chromosome-wide association study

    Get PDF
    Background The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. Methods Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case–control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. Results Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC (β 0.020, SE 0.004, p 4.97 × 10–08), with suggestive evidence of association with FEV1 (β 0.092, SE 0.018, p 3.40 × 10–07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. Conclusions This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.publishedVersio

    A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci

    Get PDF
    There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer

    A genome-wide association study of bronchodilator response in participants of European and African ancestry from six independent cohorts

    Get PDF
    Introduction Bronchodilator response (BDR) is a measurement of acute bronchodilation in response to short-acting β2-agonists, with a heritability between 10 and 40%. Identifying genetic variants associated with BDR may lead to a better understanding of its complex pathophysiology. Methods We performed a genome-wide association study (GWAS) of BDR in six adult cohorts with participants of European ancestry (EA) and African ancestry (AA) including community cohorts and cohorts ascertained on the basis of obstructive pulmonary disease. Validation analysis was carried out in two paediatric asthma cohorts. Results A total of 10 623 EA and 3597 AA participants were included in the analyses. No single nucleotide polymorphism (SNP) was associated with BDR at the conventional genome-wide significance threshold (p<5×10−8). Performing fine mapping and using a threshold of p<5×10−6 to identify suggestive variants of interest, we identified three SNPs with possible biological relevance: rs35870000 (within FREM1), which may be involved in IgE- and IL5-induced changes in airway smooth muscle cell responsiveness; rs10426116 (within ZNF284), a zinc finger protein, which has been implicated in asthma and BDR previously; and rs4782614 (near ATP2C2), involved in calcium transmembrane transport. Validation in paediatric cohorts yielded no significant SNPs, possibly due to age–genotype interaction effects. Conclusion Ancestry-stratified and ancestry-combined GWAS meta-analyses of over 14 000 participants did not identify genetic variants associated with BDR at the genome-wide significance threshold, although a less stringent threshold identified three variants showing suggestive evidence of association. A common definition and protocol for measuring BDR in research may improve future efforts to identify variants associated with BDR.publishedVersio

    Neutrophil-mediated IL-6 receptor trans-signaling and the risk of chronic obstructive pulmonary disease and asthma

    Get PDF
    The Asp358Ala variant in the interleukin-6 receptor (IL-6R) gene has been implicated in asthma, autoimmune and cardiovascular disorders, but its role in other respiratory conditions such as chronic obstructive pulmonary disease (COPD) has not been investigated. The aims of this study were to evaluate whether there is an association between Asp358Ala and COPD or asthma risk, and to explore the role of the Asp358Ala variant in sIL-6R shedding from neutrophils and its pro-inflammatory effects in the lung. We undertook logistic regression using data from the UK Biobank and the ECLIPSE COPD cohort. Results were meta-analyzed with summary data from a further three COPD cohorts (7,519 total cases and 35,653 total controls), showing no association between Asp358Ala and COPD (OR = 1.02 [95% CI: 0.96, 1.07]). Data from the UK Biobank showed a positive association between the Asp358Ala variant and atopic asthma (OR = 1.07 [1.01, 1.13]). In a series of in vitro studies using blood samples from 37 participants, we found that shedding of sIL-6R from neutrophils was greater in carriers of the Asp358Ala minor allele than in non-carriers. Human pulmonary artery endothelial cells cultured with serum from homozygous carriers showed an increase in MCP-1 release in carriers of the minor allele, with the difference eliminated upon addition of tocilizumab. In conclusion, there is evidence that neutrophils may be an important source of sIL-6R in the lungs, and the Asp358Ala variant may have pro-inflammatory effects in lung cells. However, we were unable to identify evidence for an association between Asp358Ala and COPD.This work was supported by the UK Medical Research Council [MR/L003120/1 and MR/J00345X/1]; the British Heart Foundation [RG/13/13/30194]; the UK National Institute for Health Research Cambridge Biomedical Research Centre; and the Cambridge NIHR BRC Cell Phenotyping Hub. The Cardiovascular Epidemiology Unit at the University of Cambridge is supported by the UK Medical Research Council [G0800270]; the British Heart Foundation [SP/09/002]; and the UK National Institute for Health Research Cambridge Biomedical Research Centre. The ECLIPSE study is supported by GlaxoSmithKline [SCO104960]. The COPDGene study was supported by National Institutes of Health [R01 HL089897 and R01 HL089856]. The Norway GenKOLS study is supported by GlaxoSmithKline [RES11080]. The VA Normative Aging Study is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA. Funding to pay the Open Access publication charges for this article was provided by University of Cambridge block grants from the Research Councils UK and the Charity Open Access Fund

    Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects

    Get PDF
    The heritability of chronic obstructive pulmonary disease (COPD) cannot be fully explained by recognized genetic risk factors identified as achieving genome-wide significance. In addition, the combined contribution of genetic variation to COPD risk has not been fully explored. We sought to determine: (1) whether studies of variants from previous studies of COPD or lung function in a larger sample could identify additional associated variants, particularly for severe COPD; and (2) the impact of genetic risk scores on COPD. We genotyped 3,346 single-nucleotide polymorphisms (SNPs) in 2,588 cases (1,803 severe COPD) and 1,782 control subjects from four cohorts, and performed association testing with COPD, combining these results with existing genotyping data from 6,633 cases (3,497 severe COPD) and 5,704 control subjects. In addition, we developed genetic risk scores from SNPs associated with lung function and COPD and tested their discriminatory power for COPD-related measures. We identified significant associations between SNPs near PPIC (P = 1.28 X 10-8) and PPP4R4/SERPINA1 (P = 1.0131028) and severe COPD; the latter association may be driven by recognized variants in SERPINA1. Genetic risk scores based on SNPs previously associated with COPD and lung function had a modest ability to discriminate COPD (area under the curve, ~0.6), and accounted for a mean 0.9–1.9% lower forced expiratory volume in 1 second percent predicted for each additional risk allele. In a large genetic association analysis, we identified associations with severe COPD near PPIC and SERPINA1. A risk score based on combining genetic variants had modest, but significant, effects on risk of COPD and lung function
    corecore