302 research outputs found

    The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres

    Get PDF
    Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior

    Removal of acid gases and oxides of nitrogen from space cabin atmospheres

    Get PDF
    Removal of acid gases and oxides of nitrogen from spacecraft cabin atmospheres at ambient temperature

    Observation of anomalous spin-state segregation in a trapped ultra-cold vapor

    Get PDF
    We observe counter-intuitive spin segregation in an inhomogeneous sample of ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially selective microwave spectroscopy to verify a model that accounts for the differential forces on two internal spin states. In any simple understanding of the cloud dynamics, the forces are far too small to account for the dramatic transient spin polarizations observed. The underlying mechanism remains to be elucidated.Comment: 5 pages, 3 figure

    Internal state conversion in ultracold gases

    Full text link
    We consider an ultracold gas of (non-condensed) bosons or fermions with two internal states, and study the effect of a gradient of the transition frequency between these states. When a π/2\pi/2 RF pulse is applied to the sample, exchange effects during collisions transfer the atoms into internal states which depend on the direction of their velocity. This results, after a short time, in a spatial separation between the two states. A kinetic equation is solved analytically and numerically; the results agree well with the recent observations of Lewandowski et al.Comment: Accepted version, to appear in PR

    Human γδ T cells recognize CD1b by two distinct mechanisms

    Get PDF
    γδ T cells form an abundant part of the human cellular immune system, where they respond to tissue damage, infection, and cancer. The spectrum of known molecular targets recognized by Vδ1-expressing γδ T cells is becoming increasingly diverse. Here we describe human γδ T cells that recognize CD1b, a lipid antigen-presenting molecule, which is inducibly expressed on monocytes and dendritic cells. Using CD1b tetramers to study multiple donors, we found that many CD1b-specific γδ T cells use Vδ1. Despite their common use of Vδ1, three CD1b-specific γδ T cell receptors (TCRs) showed clear differences in the surface of CD1b recognized, the requirement for lipid antigens, and corecognition of butryophilin-like proteins. Several Vγ segments were present among the CD1b-specific TCRs, but chain swap experiments demonstrated that CD1b specificity was mediated by the Vδ1 chain. One of the CD1b-specific Vδ1+ TCRs paired with Vγ4 and shows dual reactivity to CD1b and butyrophilin-like proteins. αβ TCRs typically recognize the peptide display platform of MHC proteins. In contrast, our results demonstrate the use of rearranged receptors to mediate diverse modes of recognition across the surface of CD1b in ways that do and do not require carried lipids

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte

    Text mining for the biocuration workflow

    Get PDF
    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community

    Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central neurotensin (NT) administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin.</p> <p>Results</p> <p>We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced <it>c-fos </it>expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21–39 min) and late (40–60 min) tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non-discriminative NTS1/NTS2 analogs reversing all nociceptive endpoint behaviors, pure NTS2 agonists specifically inhibited paw lifting, supporting a role of NTS2 in spinal modulation of persistent nociception.</p> <p>Conclusion</p> <p>The present study provides the first demonstration that activation of NTS2 receptors produces analgesia in the persistent inflammatory pain model of formalin. The dichotomy between these two classes of compounds also indicates that both NTS1 and NTS2 receptors are involved in tonic pain inhibition and implies that these two NT receptors modulate the pain-induced behavioral responses by acting on distinct spinal and/or supraspinal neural circuits. In conclusion, development of NT agonists targeting both NTS1 and NTS2 receptors could be useful for chronic pain management.</p
    • …
    corecore