278 research outputs found

    Diagrammatic Monte Carlo for Correlated Fermions

    Get PDF
    We show that Monte Carlo sampling of the Feynman diagrammatic series (DiagMC) can be used for tackling hard fermionic quantum many-body problems in the thermodynamic limit by presenting accurate results for the repulsive Hubbard model in the correlated Fermi liquid regime. Sampling Feynman's diagrammatic series for the single-particle self-energy we can study moderate values of the on-site repulsion (U/t4U/t \sim 4) and temperatures down to T/t=1/40T/t=1/40. We compare our results with high temperature series expansion and with single-site and cluster dynamical mean-field theory.Comment: 4 pages, 5 figures, stylistic change

    Improved Si:As BIBIB (Back-Illuminated Blocked-Impurity-Band) hybrid arrays

    Get PDF
    Results of a program to increase the short wavelength (less than 10 microns) detective quantum efficiency, eta/beta, of Si:As Impurity Band Conduction arrays are presented. The arrays are epitaxially grown Back-Illuminated Blocked (BIB) Impurity-Band (BIBIB) 10x50 detectors bonded to switched-FET multiplexers. It is shown that the 4.7 microns detective quantum efficiency increases proportionately with the thickness of the infrared active layer. A BIB array with a thick active layer, designed for low dark current, exhibits eta/beta = 7 to 9 percent at 4.7 microns for applied bias voltages between 3 and 5 V. The product of quantum efficiency and photoelectric gain, etaG, increases from 0.3 to 2.5 as the voltage increases from 3 to 5 V. Over this voltage range, the dark current increases from 8 to 120 e(-)s(-1) at a device temperature of 4.2 K and is under 70 e(-)s(-1) for all voltages at 2 K. Because of device gain, the effective dark current (equivalent photon rate) is less than 3 e(-)s(-1) under all operating conditions. The effective read noise (equivalent photon noise) is found to be less than 12 electrons under all operating conditions and for integration times between 0.05 and 100 seconds

    Mapping the Kinematics of the Narrow-Line Region in the Seyfert Galaxy NGC 4151

    Full text link
    Using The Hubble Space Telescope's Space Telescope Imaging Spectrograph HST's STIS, observations of the OIII emission from the narrow-line region (NLR) of NGC 4151 were obtained and radial velocities determined. Five orbits of HST time were used to obtain spectra at five parallel slit configurations, at a position angle of 58 degrees, with spatial resolution 0.2 arcseconds across and 0.1 arcseconds along each slit. A spectral resolving power of ~ 9,000 with the G430M grating gave velocity measurements accurate to ~ 34 km/s. A kinematic model was generated to match the radial velocities, for comparison to previous kinematic models of biconical radial outflow developed for low-dispersion spectra at two slit positions. The new high-resolution spectra permit the measurement of accurate velocity dispersions for each radial-velocity component. The full-width at half-maximum (FWHM) reaches a maximum of 1000 km/s near the nucleus, and generally decreases with increasing distance to about 100 km/s in the extended narrow-line region (ENLR), starting at about 6 arcseconds from the nucleus. In addition to the bright emission knots, which generally fit our model, there are faint high velocity clouds which do not fit the biconical outflow pattern of our kinematic model. These faint clouds occur at the turnover points of the outflowing bright clouds. We suggest possible scenarios that could explain these rogue clouds: (1) backflow resulting from shocks and (2) outflow outside of the bicones, although the latter does not explain how the knots are ionized and accelerated. A comparison of our observations with a high-resolution radio map shows that there is no evidence that the kinematics of the NLR clouds are affected by the radio lobes that comprise the inner jet.Comment: 30 pages, 15 figures (some color), accepted for publication in the Astronomical Journal. Downloadable versions of the paper with high resolution figures/images are available here: http://www.chara.gsu.edu/~crenshaw/NGC4151_kinematics.pdf <--PDF Version http://www.chara.gsu.edu/~crenshaw/NGC4151_kinematics.ps <--PS Versio

    Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-ray Tail

    Get PDF
    We propose a model for the hard X-ray (> 10 keV) emission observed from the supernova remnant Cas A. Lower hybrid waves are generated in strong (mG) magnetic fields, generally believed to reside in this remnant, by shocks reflected from density inhomogeneities. These then accelerate electrons to energies of several tens of keV. Around 4% of the x-ray emitting plasma electrons need to be in this accelerated distribution, which extends up to electron velocities of order the electron Alfven speed, and is directled along magnetic field lines. Bremsstrahlung from these electrons produces the observed hard x-ray emission. Such waves and accelerated electrons have been observed in situ at Comet Halley, and we discuss the viability of the extrapolation from this case to the parameters relevant to Cas A.Comment: 20 pages, 3 figures, aasTeX502, accepted in Ap

    Hubble Space Telescope Imaging of the Optical Transient Associated with GRB970508

    Get PDF
    We report on Hubble Space Telescope (HST) observations of the optical transient (OT) discovered in the error box of the gamma-ray burst GRB970508. The object was imaged on 1997 June 2 with the Space Telescope Imaging Spectrograph (STIS) and Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The observations reveal a point-like source with R = 23.1 +- 0.2 and H = 20.6 +- 0.3, in agreement with the power-law temporal decay seen in ground-based monitoring. Unlike the case of GRB970228, no nebulosity is detected surrounding the OT of GRB970508. We set very conservative upper limits of R ~ 24.5 and H ~ 22.2 on the brightness of any underlying extended source. If this subtends a substantial fraction of an arcsecond, then the R band limit is ~25.5. In combination with Keck spectra that show Mg I absorption and [O II] emission at a redshift of z = 0.835, our observations suggest that the OT is located in a star-forming galaxy with total luminosity one order of magnitude lower than the knee of the galaxy luminosity function, L*. Such galaxies are now thought to harbor the majority of star formation at z ~ 1; therefore, these observations may provide support for a link between GRBs and star formation.Comment: 12 pages, Latex, 2 Postscript figures, to appear in The Astrophysical Journal Letter

    Dynamical mean-field theory for bosons

    Full text link
    We discuss the recently developed bosonic dynamical mean-field (B-DMFT) framework, which maps a bosonic lattice model onto the selfconsistent solution of a bosonic impurity model with coupling to a reservoir of normal and condensed bosons. The effective impurity action is derived in several ways: (i) as an approximation to the kinetic energy functional of the lattice problem, (ii) using a cavity approach, and (iii) by using an effective medium approach based on adding a one-loop correction to the selfconsistently defined condensate. To solve the impurity problem, we use a continuous-time Monte Carlo algorithm based on a sampling of a perturbation expansion in the hybridization functions and the condensate wave function. As applications of the formalism we present finite temperature B-DMFT phase diagrams for the bosonic Hubbard model on a 3d cubic and 2d square lattice, the condensate order parameter as a function of chemical potential, critical exponents for the condensate, the approach to the weakly interacting Bose gas regime for weak repulsions, and the kinetic energy as a function of temperature.Comment: 26 pages, 19 figure

    The Resolved Narrow Line Region in NGC4151

    Full text link
    We present slitless spectra of the Narrow Line Region (NLR) in NGC4151 from the Space Telescope Imaging Spectrograph (STIS) on HST, and investigate the kinematics and physical conditions of the emission line clouds in this region. Using medium resolution (~0.5 Angstrom) slitless spectra at two roll angles and narrow band undispersed images, we have mapped the NLR velocity field from 1.2 kpc to within 13 pc (H_o=75 km/s/Mpc) of the nucleus. The inner biconical cloud distribution exhibits recessional velocities relative to the nucleus to the NE and approaching velocities to the SW of the nucleus. We find evidence for at least two kinematic components in the NLR. One kinematic component is characterized by Low Velocities and Low Velocity Dispersions (LVLVD clouds: |v| < 400 km/s, and Delta_v < 130 km/s). This population extends through the NLR and their observed kinematics may be gravitationally associated with the host galaxy. Another component is characterized by High Velocities and High Velocity Dispersions (HVHVD clouds: 400 130 km/s). This set of clouds is located within 1.1 arcsec (~70pc) of the nucleus and has radial velocities which are too high to be gravitational in origin, but show no strong correlation between velocity or velocity dispersion and the position of the radio knots. Outflow scenarios will be discussed as the driving mechanism for these HVHVD clouds.Comment: 38 pages, 14 figures, accepted by ApJ. For higher resolution images see http://www.pha.jhu.edu/~kaiser

    Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets

    Get PDF
    Frustration refers to competition between different interactions that cannot be simultaneously satisfied, a familiar feature in many magnetic solids. Strong frustration results in highly degenerate ground states, and a large suppression of ordering by fluctuations. Key challenges in frustrated magnetism are characterizing the fluctuating spin-liquid regime and determining the mechanism of eventual order at lower temperature. Here, we study a model of a diamond lattice antiferromagnet appropriate for numerous spinel materials. With sufficiently strong frustration a massive ground state degeneracy develops amongst spirals whose propagation wavevectors reside on a continuous two-dimensional ``spiral surface'' in momentum space. We argue that an important ordering mechanism is entropic splitting of the degenerate ground states, an elusive phenomena called order-by-disorder. A broad ``spiral spin-liquid'' regime emerges at higher temperatures, where the underlying spiral surface can be directly revealed via spin correlations. We discuss the agreement between these predictions and the well characterized spinel MnSc2S4

    Dust enshrouded star-forming activity in Arp 299

    Full text link
    We present mid-infrared spectro-imaging (5 - 16 microns) observations of the infrared luminous interacting system Arp 299 (=Mrk171 =IC694+NGC3690) obtained with the ISOCAM instrument aboard ISO. Our observations show that nearly 40% of the total emission at 7 and 15 microns is diffuse, originating from the interacting disks of the galaxies. Moreover, they indicate the presence of large amounts of hot dust in the main infrared sources of the system and large extinctions toward the nuclei. While the observed spectra have an overall similar shape, mainly composed of Unidentified Infrared Bands (UIB) in the short wavelength domain, a strong continuum at ~ 13 microns and a deep silicate absorption band at 10 microns, their differences reveal the varying physical conditions of each component. For each source, the spectral energy distribution (SED) can be reproduced by a linear combination of a UIB "canonical" spectral template and a hot dust continuum due to a 230-300 K black body, after independently applying an extinction correction to both of them. We find that the UIB extinction does not vary much throughout the system (A_V ~ 5 mag) suggesting that most UIBs originate from less enshrouded regions. IC694 appears to dominate the infrared emission of the system and our observations support the interpretation of a deeply embedded nuclear starburst located behind an absorption of about 40 mag. The central region of NGC3690 displays a hard radiation field characterized by a [NeIII]/[NeII] ratio > 1.8. It also hosts a strong continuum from 5 to 16 microns which can be explained as thermal emission from a deeply embedded (A_V ~ 60 mag) compact source, consistent with the mid-infrared signature of an active galactic nucleus (AGN), and in agreement with recent X-ray findings.Comment: to be published in Astronomy and Astrophysics - 12 page

    Low temperature properties of the fermionic mixtures with mass imbalance in optical lattice

    Full text link
    We study the attractive Hubbard model with mass imbalance to clarify low temperature properties of the fermionic mixtures in the optical lattice. By combining dynamical mean-field theory with the continuous-time quantum Monte Carlo simulation, we discuss the competition between the superfluid and density wave states at half filling. By calculating the energy and the order parameter for each state, we clarify that the coexisting (supersolid) state, where the density wave and superfluid states are degenerate, is realized in the system. We then determine the phase diagram at finite temperatures.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
    corecore