93 research outputs found

    Observation of strongly entangled photon pairs from a nanowire quantum dot

    Get PDF
    A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position controlled nanowire quantum dot with a fidelity as high as 0.859 +/- 0.006 and concurrence of 0.80 +/- 0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single electron devices and light emitting diodes.Comment: Article and Supplementary Information with open access published at: http://www.nature.com/ncomms/2014/141031/ncomms6298/full/ncomms6298.htm

    An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies

    Full text link
    Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast custom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g^{(2)}(0)=0.005(7), and an "Output Noise Factor" (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date

    Time-domain diffuse correlation spectroscopy

    Get PDF
    Physiological monitoring of oxygen delivery to the brain has great significance for improving the management of patients at risk for brain injury. Diffuse correlation spectroscopy (DCS) is a rapidly growing optical technology able to non-invasively assess the blood flow index (BFi) at the bedside. The current limitations of DCS are the contamination introduced by extracerebral tissue and the need to know the tissue's optical properties to correctly quantify the BFi. To overcome these limitations, we have developed a new technology for time-resolved diffuse correlation spectroscopy. By operating DCS in the time domain (TD-DCS), we are able to simultaneously acquire the temporal point-spread function to quantify tissue optical properties and the autocorrelation function to quantify the BFi. More importantly, by applying time-gated strategies to the DCS autocorrelation functions, we are able to differentiate between short and long photon paths through the tissue and determine the BFi for different depths. Here, we present the novel device and we report the first experiments in tissue-like phantoms and in rodents. The TD-DCS method opens many possibilities for improved non-invasive monitoring of oxygen delivery in humans

    Analysis of detector performance in a gigahertz clock rate quantum key distribution system

    Get PDF
    We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates

    Correlated blinking of fluorescent emitters mediated by single plasmons

    Get PDF
    We observe time-correlated emission between a single CdSe/CdS/ZnS quantum dot exhibiting single-photon statistics and a fluorescent nanobead located micrometers apart. This is accomplished by coupling both emitters to a silver nanowire. Single plasmons are created on the latter from the quantum dot, and transfer energy to excite in turn the fluorescent nanobead. We demonstrate that the molecules inside the bead show the same blinking behavior as the quantum dot

    Space QUEST mission proposal: experimentally testing decoherence due to gravity

    Get PDF
    Models of quantum systems on curved space-times lack sufficient experimental verification. Some speculative theories suggest that quantum properties, such as entanglement, may exhibit entirely different behavior to purely classical systems. By measuring this effect or lack thereof, we can test the hypotheses behind several such models. For instance, as predicted by Ralph and coworkers [T C Ralph, G J Milburn, and T Downes, Phys. Rev. A, 79(2):22121, 2009, T C Ralph and J Pienaar, New Journal of Physics, 16(8):85008, 2014], a bipartite entangled system could decohere if each particle traversed through a different gravitational field gradient. We propose to study this effect in a ground to space uplink scenario. We extend the above theoretical predictions of Ralph and coworkers and discuss the scientific consequences of detecting/failing to detect the predicted gravitational decoherence. We present a detailed mission design of the European Space Agency's (ESA) Space QUEST (Space - Quantum Entanglement Space Test) mission, and study the feasibility of the mission schema.Comment: 18 pages, 13 figures, included radiation damage to detectors in appendi

    Planar architecture optimizes Si single-photon-counting detectors

    No full text
    A new planar structure for silicon single-photon-counting detectors leads to the doubling of detector efficiency while maintaining picosecond timing resolution, low dark counts, and low power consumption
    corecore