1,018 research outputs found

    Basement and Regional Structure Along Strike of the Queen Charlotte Fault in the Context of Modern and Historical Earthquake Ruptures

    Get PDF
    The Queen Charlotte fault (QCF) is a dextral transform system located offshore of southeastern Alaska and western Canada, accommodating similar to 4.4 cm/yr of relative motion between the Pacific and North American plates. Oblique convergence along the fault increases southward, and how this convergence is accommodated is still debated. Using seismic reflection data, we interpret offshore basement structure, faulting, and stratigraphy to provide a geological context for two recent earthquakes, an M-w 7.5 strike-slip event near Craig, Alaska, and an M-w 7.8 thrust event near Haida Gwaii, Canada. We map downwarped Pacific oceanic crust near 54 degrees N, between the two rupture zones. Observed downwarping decreases north and south of 54 degrees N, parallel to the strike of the QCF. Bending of the Pacific plate here may have initiated with increased convergence rates due to a plate motion change at similar to 6 Ma. Tectonic reconstruction implies convergence-driven Pacific plate flexure, beginning at 6 Ma south of a 10 degrees bend the QCF (which is currently at 53.2 degrees N) and lasting until the plate translated past the bend by similar to 2 Ma. Normal-faulted approximately late Miocene sediment above the deep flexural depression at 54 degrees N, topped by relatively undeformed Pleistocene and younger sediment, supports this model. Aftershocks of the Haida Gwaii event indicate a normal-faulting stress regime, suggesting present-day plate flexure and underthrusting, which is also consistent with reconstruction of past conditions. We thus favor a Pacific plate underthrusting model to initiate flexure and accommodation space for sediment loading. In addition, mapped structures indicate two possible fault segment boundaries along the QCF at 53.2 degrees N and at 56 degrees N.USGS Earthquake Hazards External Grants ProgramNational Earthquake Hazards Reduction ProgramUTIG Ewing/Worzel FellowshipInstitute for Geophysic

    Stress-Induced Gene ESI35 from Lophopyrum elongatum

    Full text link

    ESI3, a Stress-Induced Gene from Lophopyrum elongatum

    Full text link

    A cDNA Encoding Farnesyl Pyrophosphate Synthase in White Lupin

    Full text link

    Shift invariant preduals of &#8467;<sub>1</sub>(&#8484;)

    Get PDF
    The Banach space &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) admits many non-isomorphic preduals, for example, C(K) for any compact countable space K, along with many more exotic Banach spaces. In this paper, we impose an extra condition: the predual must make the bilateral shift on &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) weak&lt;sup&gt;*&lt;/sup&gt;-continuous. This is equivalent to making the natural convolution multiplication on &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) separately weak*-continuous and so turning &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) into a dual Banach algebra. We call such preduals &lt;i&gt;shift-invariant&lt;/i&gt;. It is known that the only shift-invariant predual arising from the standard duality between C&lt;sub&gt;0&lt;/sub&gt;(K) (for countable locally compact K) and &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) is c&lt;sub&gt;0&lt;/sub&gt;(&#8484;). We provide an explicit construction of an uncountable family of distinct preduals which do make the bilateral shift weak&lt;sup&gt;*&lt;/sup&gt;-continuous. Using Szlenk index arguments, we show that merely as Banach spaces, these are all isomorphic to c&lt;sub&gt;0&lt;/sub&gt;. We then build some theory to study such preduals, showing that they arise from certain semigroup compactifications of &#8484;. This allows us to produce a large number of other examples, including non-isometric preduals, and preduals which are not Banach space isomorphic to c&lt;sub&gt;0&lt;/sub&gt;

    Contrasting Decollement and Prism Properties over the Sumatra 2004-2005 Earthquake Rupture Boundary

    No full text
    Styles of subduction zone deformation and earthquake rupture dynamics are strongly linked, jointly influencing hazard potential. Seismic reflection profiles across the trench west of Sumatra, Indonesia, show differences across the boundary between the major 2004 and 2005 plate interface earthquakes, which exhibited contrasting earthquake rupture and tsunami generation. In the southern part of the 2004 rupture, we interpret a negative-polarity sedimentary reflector ~500 meters above the subducting oceanic basement as the seaward extension of the plate interface. This predécollement reflector corresponds to unusual prism structure, morphology, and seismogenic behavior that are absent along the 2005 rupture zone. Although margins like the 2004 rupture zone are globally rare, our results suggest that sediment properties influence earthquake rupture, tsunami hazard, and prism development at subducting plate boundaries

    Martian outflow channels : How did their source aquifers form, and why did they drain so rapidly?

    Get PDF
    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation

    β-delayed neutron spectroscopy using trapped radioactive ions

    Get PDF
    A novel technique for β-delayed neutron spectroscopy has been demonstrated using trapped ions. The neutron-energy spectrum is reconstructed by measuring the time of flight of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection, such as backgrounds from scattered neutrons and γ rays and complicated detector-response functions. I+137 ions delivered from a Cf252 source were confined in a linear Paul trap surrounded by radiation detectors, and the β-delayed neutron-energy spectrum and branching ratio were determined by detecting the β- and recoil ions in coincidence. Systematic effects were explored by determining the branching ratio three ways. Improvements to achieve higher detection efficiency, better energy resolution, and a lower neutron-energy threshold are proposed. © 2013 American Physical Society
    corecore