research

Shift invariant preduals of &#8467;<sub>1</sub>(&#8484;)

Abstract

The Banach space &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) admits many non-isomorphic preduals, for example, C(K) for any compact countable space K, along with many more exotic Banach spaces. In this paper, we impose an extra condition: the predual must make the bilateral shift on &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) weak&lt;sup&gt;*&lt;/sup&gt;-continuous. This is equivalent to making the natural convolution multiplication on &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) separately weak*-continuous and so turning &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) into a dual Banach algebra. We call such preduals &lt;i&gt;shift-invariant&lt;/i&gt;. It is known that the only shift-invariant predual arising from the standard duality between C&lt;sub&gt;0&lt;/sub&gt;(K) (for countable locally compact K) and &#8467;&lt;sub&gt;1&lt;/sub&gt;(&#8484;) is c&lt;sub&gt;0&lt;/sub&gt;(&#8484;). We provide an explicit construction of an uncountable family of distinct preduals which do make the bilateral shift weak&lt;sup&gt;*&lt;/sup&gt;-continuous. Using Szlenk index arguments, we show that merely as Banach spaces, these are all isomorphic to c&lt;sub&gt;0&lt;/sub&gt;. We then build some theory to study such preduals, showing that they arise from certain semigroup compactifications of &#8484;. This allows us to produce a large number of other examples, including non-isometric preduals, and preduals which are not Banach space isomorphic to c&lt;sub&gt;0&lt;/sub&gt;

    Similar works