The Banach space ℓ<sub>1</sub>(ℤ) admits many non-isomorphic preduals, for
example, C(K) for any compact countable space K, along with many more
exotic Banach spaces. In this paper, we impose an extra condition: the predual
must make the bilateral shift on ℓ<sub>1</sub>(ℤ) weak<sup>*</sup>-continuous. This is
equivalent to making the natural convolution multiplication on ℓ<sub>1</sub>(ℤ)
separately weak*-continuous and so turning ℓ<sub>1</sub>(ℤ) into a dual Banach
algebra. We call such preduals <i>shift-invariant</i>. It is known that the
only shift-invariant predual arising from the standard duality between C<sub>0</sub>(K)
(for countable locally compact K) and ℓ<sub>1</sub>(ℤ) is c<sub>0</sub>(ℤ). We provide
an explicit construction of an uncountable family of distinct preduals which do
make the bilateral shift weak<sup>*</sup>-continuous. Using Szlenk index arguments, we
show that merely as Banach spaces, these are all isomorphic to c<sub>0</sub>. We then
build some theory to study such preduals, showing that they arise from certain
semigroup compactifications of ℤ. This allows us to produce a large number
of other examples, including non-isometric preduals, and preduals which are not
Banach space isomorphic to c<sub>0</sub>