281 research outputs found

    Hole-LO phonon interaction in InAs/GaAs quantum dots

    Get PDF
    We investigate the valence intraband transitions in p-doped self-assembled InAs quantum dots using far-infrared magneto-optical technique with polarized radiation. We show that a purely electronic model is unable to account for the experimental data. We calculate the coupling between the mixed hole LO-phonon states using the Fr\"ohlich Hamiltonian, from which we determine the polaron states as well as the energies and oscillator strengths of the valence intraband transitions. The good agreement between the experiments and calculations provides strong evidence for the existence of hole-polarons and demonstrates that the intraband magneto-optical transitions occur between polaron states

    Human larynx motor cortices coordinate respiration for vocal-motor control.

    Get PDF
    Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both 'larynx areas' more strongly than singing despite the reduced involvement of the larynx during whistling. We provide further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory systems and discuss the implications for the evolution of speech

    Human larynx motor cortices coordinate respiration for vocal-motor control

    Get PDF
    Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both ‘larynx areas’ more strongly than singing despite the reduced involvement of the larynx during whistling. We provide further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory systems and discuss the implications for the evolution of speech

    High-speed, long-term, 4D in vivo lifetime imaging in intact and injured zebrafish and mouse brains by instant FLIM

    Get PDF
    Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in the emission decay lifetime. With fluorescence lifetime imaging microscopy (FLIM), physiological parameters such as pH, refractive index, ion concentration, dissolved gas concentration, and fluorescence resonance energy transfer (FRET) can be measured. Despite these benefits, existing FLIM techniques are typically slow, noisy, and hard to implement due to expensive instrumentation and complex post-processing. To overcome these limitations, we present instant FLIM, a method that allows real-time acquisition and display of two-photon intensity, lifetime, and phasor imaging data. Using analog signal processing, we demonstrate in vivo four-dimensional (4D) FLIM movies by imaging mouse and zebrafish glial cell response to injury over 12 hours through intact skulls. Instant FLIM can be implemented as an upgrade to an existing multiphoton microscope using cost-effective off-the-shelf components, requires no data post-processing, and is demonstrated to be compatible with FD-FLIM super-resolution techniques

    Beatboxers and Guitarists Engage Sensorimotor Regions Selectively When Listening to the Instruments They can Play.

    Get PDF
    Studies of classical musicians have demonstrated that expertise modulates neural responses during auditory perception. However, it remains unclear whether such expertise-dependent plasticity is modulated by the instrument that a musician plays. To examine whether the recruitment of sensorimotor regions during music perception is modulated by instrument-specific experience, we studied nonclassical musicians-beatboxers, who predominantly use their vocal apparatus to produce sound, and guitarists, who use their hands. We contrast fMRI activity in 20 beatboxers, 20 guitarists, and 20 nonmusicians as they listen to novel beatboxing and guitar pieces. All musicians show enhanced activity in sensorimotor regions (IFG, IPC, and SMA), but only when listening to the musical instrument they can play. Using independent component analysis, we find expertise-selective enhancement in sensorimotor networks, which are distinct from changes in attentional networks. These findings suggest that long-term sensorimotor experience facilitates access to the posterodorsal "how" pathway during auditory processing.This work was supported by the Wellcome Trust (Grant number WT090961MA awarded to S.K.S.)

    Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons

    Get PDF
    Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a 'top-down' scaffolding event. Further, we identify an F-actin population - stable base clusters - that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals
    • …
    corecore