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a b s t r a c t 

Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability 

is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus 

that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated 

that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal 

and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. 

Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of 

the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech 

motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic 

resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor 

cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both ‘larynx 

areas’ more strongly than singing despite the reduced involvement of the larynx during whistling. We provide 

further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that 

laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions 

about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory 

systems and discuss the implications for the evolution of speech. 

1

 

m  

b  

v  

(  

P  

t  

H  

m  

a  

t  

T  

h

 

(  

o  

fi  

t  

b  

S  

s  

s  

2  

t  

h

R

A

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository
. Introduction 

Diverse and flexible vocal communication is a hallmark of the hu-

an species, most notably in the ability to speak and sing. These human

ehaviours are supported by the human capacity to flexibly add novel

ocal patterns to their repertoire usually by learning through imitation

 Janik and Slater, 2000 ). Few species of mammals have strong Vocal

roduction Learning (VPL) abilities and none of these are closely related

o humans. Monkeys are particularly weak vocal learners ( Fischer and

ammerschmidt, 2019 ), while non-human apes appear to have inter-

ediate VPL abilities ( Lameira et al., 2016 ; Wich et al., 2012 ) as well

s some facility in controlling the respiratory drive for sound produc-

ion ( Lameira et al., 2013 ; Perlman and Clark, 2015 ; Wich et al., 2009 ).
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hese abilities are supported by specialisations in the motor system that

ave been considerably altered over course of primate evolution. 

The human brain is peculiar in having two Larynx Motor Areas

LMCs) per hemisphere to control a single laryngeal organ, where only

ne larynx area would be expected ( Belyk and Brown, 2017 ). The

rst of these LMCs to be described is located in primary motor cor-

ex, which contains a somatotopic map of the body’s muscles in the

rain ( Lotze et al., 2000 ; Penfield and Boldrey, 1937 ; Rao et al., 1995 ;

tippich et al., 2002 ). Early brain imaging studies identified a human-

pecific larynx-controlling region at the dorsal extent of the orofacial

omatotopy in humans ( Brown et al., 2009 , 2008 , 2004 ; Loucks et al.,

007 ; Simonyan et al., 2009 , 2007 ). The dorsal Larynx Motor Cor-

ex (dLMC) is located deep within the central sulcus in primary mo-

or cortex and is adjacent to articulatory motor regions for the lips and
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ongue ( Loucks et al. 2007 ; Simonyan et al. 2007 ; Brown et al. 2008 ;

eck et al. 2009 ; Grabski et al. 2013 ; Belyk et al., 2018b ). 

The ventral Larynx Motor Cortex (vLMC) has been identified by

ore recent studies including neurosurgical recording ( Bouchard et al.,

013 ; Chang et al., 2013 ; Dichter et al., 2018 ) and brain imaging

 Eichert et al. 2020a ; Kleber et al. 2013 ; Belyk et al. 2016 ), though

arlier studies reported activation that was consistent with this region

 Olthoff et al., 2008 ; Terumitsu et al., 2006 ). These studies confirmed

he localization of the dLMC, near the articulatory muscles, and also ob-

erved a second, larynx-controlling region at the ventral extent of the

rofacial motor cortex near the representation of the throat and swal-

owing ( Breshears et al., 2015 ; Penfield and Boldrey, 1937 ). 

The mechanisms by which these two brain areas share control over

he voice, and what separate contributions they may make to voice mo-

or control, are critical to our understanding of how humans evolved to

peak. The dLMC is known to integrate laryngeal and respiratory motor

ontrol ( Loucks et al., 2007 ; Simonyan et al., 2007 ), suggesting that it

ay have a role in coordinating these muscular systems both of which

re required for vocal sound production. The dual cortical representa-

ion of the laryngeal muscles had not yet been described at the time

f these studies, and it is not known whether this laryngeal-respiratory

inkage is shared by the vLMC. 

We hypothesize that either both larynx motor areas integrate la-

yngeal and respiratory function, or laryngeal-motor integration is re-

tricted to the dLMC. Joint control of the laryngeal and respiratory mus-

ulature is likely to reduce conduction latencies as well as the metabolic

ost of coordination between the muscle groups that drive the primary

ound source for communication ( Hallermann et al., 2012 ; Ju et al.,

016 ), which may have driven both regions to develop this feature.

lternatively, the restriction of laryngeal-respiratory integration to the

LMC would suggest a simpler adaptation in support of speech motor

ontrol. 

We conducted an ultra-high field functional Magnetic Resonance

maging (fMRI) study of voice motor control as compared to whistling

 Fig. 1 ). Vocal imitation of wordless melodies is an effective local-

zer of the dorsal and ventral larynx motor areas ( Belyk et al., 2016 ).

histling imitation matches the experimental demands of vocal imita-

ion ( Belyk et al., 2018a ) and engages a different subset of the speech

elevant musculature. Whereas singing engages the laryngeal and respi-

atory muscles, whistling engages the articulatory and respiratory mus-

les ( Belyk et al., 2019 ). Comparing the neural correlates of this combi-

ation of behaviours is a novel probe of a neural system that provides

he vocal dexterity required for speech and furthers our understanding

f the unique features that make the human brain speech capable . 

. Methods 

.1. Participants 

Thirteen participants (9 female), with a mean age of 26.4 (SD 5.2)

ears participated in the study after giving their informed consent. All

articipants were without neurological or psychiatric illness. Twelve

articipants were right-handed, and one was ambidextrous. Participants

ad diverse linguistic backgrounds and included native speakers of En-

lish (4), German (4), Dutch (3), Spanish (1), or Catalan (1) though all

ere fluent in English. Participants were recruited at Maastricht Uni-

ersity. The study was approved by the Ethical Review Committee at

he Faculty of Psychology and Neuroscience at Maastricht University

ECP-161_01_02_2016). 

A second sample of twenty-four native speakers of British English

21 female) with mean age 21.0 (SD 3.3) was analysed to replicate rest-

ng state analyses. Volunteers were recruited from the participant pool

t the Department of Psychology at Royal Holloway, University of Lon-

on. This study was approved by the research ethics committee of Royal

olloway, University of London (587-2017-10-24-14-50-UXJT010). 
2 
.2. Procedure 

Participants performed experimental tasks in two runs of functional

RI lasting 720 s each. In the first run participants imitated simple

elodies by whistling or singing. The second run was an experiment

n simple speech movements not reported here. Runs followed a sparse,

vent-related paradigm that allowed participants to perform the experi-

ental task without interference due to auditory noise produced by the

RI scanner during data acquisition. Imitations began 5–7 s prior to

ata acquisition and were followed by a 6–8 s gap to allow the BOLD

blood oxygen level dependant) response to return to baseline. Compli-

nce to task instructions was verified by audio recordings taken during

he experimental session using an MRI compatible microphone. 

Participants listened to 48 simple melodies with the instruction to

mitate them as accurately as possible ( Fig. 1 ). Half of the stimuli were

resented in a vocal timbre matched to the gender of the participant

o be imitated by singing, and the remaining half were presented in

 whistled timbre to be imitated with a bilabial whistle. Singing was

erformed without words as a hum with the lips gently parted to isolate

ocalisation. Participants practiced singing and whistling without head

ovement outside the scanner on a separate set of auditory stimuli. The

uditory stimuli lasted 4 s and were followed by a 5–7 s silent period

uring which participants imitated the stimulus. 

Half of the stimuli had an isochronous temporal pattern, but var-

ed in pitch (i.e., melodies). The other half of the stimuli had a fixed

itch, but varied in temporal pattern (i.e., rhythms). Each combination

f movement task (singing or whistling) and stimulus type (melodies or

hythms) was presented in two blocks of six trials for a total of 12 trials

er condition. A visual cue preceded each trial indicating whether the

timulus should be sung whistled and was replaced by a fixation cross

or the remainder of the trial. Blocks were presented in counterbalanced

rder and separated by one or two silent rest trials to a total of 12. Sepa-

ate melodic and rhythmic stimuli were presented to address a separate

et of hypotheses not addressed here. 

Each stimulus consisted of 5 notes lasting 750 ms separated by an in-

erval of 50 ms. Twelve melodies were composed by randomly sampling

otes from a chromatic scale in the ranges A2–G3 # (110–207.65 Hz) for

ale voices, A3–G4 # (220–415.3 Hz) for female voices, and A5–G6 # 

880–1661.22 Hz) for whistling. Notes were sampled from a uniform

istribution such that every degree of the chromatic scale appeared in

qual number and interval sizes followed a normal distribution centred

n zero. Rhythms were composed by splitting one standard length note

nto two notes of half-duration (375 ms) and combining two standard

ength notes into one note of double duration (1500 ms). This proce-

ure produced temporally complex stimuli with a duration and number

f notes matched to the isochronous melodies. Split and combined notes

ccurred with equal probability at every note position to a total of 12

hythms. Rhythmic melodies had fixed pitches at C3, C4, or C6 (130.81,

61.62, or 1046.5 Hz) for male voices, female voices, and whistling re-

pectively. 

Stimuli for singing trials were synthesized in a vocal timbre on a

eutral vowel (Leon, Zero-G Limited, Okehampton, UK). Whistled stim-

li were synthesized from a sine wave multiplied by an onset envelope

hat was empirically estimated from bilabial whistles recorded from 10

ndividuals ( Belyk et al., 2018a ). 

.3. Magnetic resonance imaging 

MR images were acquired with a Siemens 7T MAGNETOM ultra-high

eld MRI with a 32-channel head coil (Nova Medical, Wilmington, USA)

t the Maastricht Brain Imaging Center in Maastricht, Netherlands. Par-

icipants’ heads were firmly secured with foam pillows. Noise cancelling

eadphones were provided to protect against auditory scanner noise. A

 1 -weighted image was collected using the MP2RAGE pulse sequence

 Marques et al., 2010 ) with 0.65 mm isotropic voxels. A run of 5 vol-

mes with the same parameters as BOLD sensitive runs was collected
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Fig. 1. Overview of methodology. A) The 

source filter theory of speech outlines three 

biomechanical systems (left) that contribute to 

speech acoustics (right). The respiratory appa- 

ratus generates mechanical force. Air passing 

through the larynx causes it to vibrate, setting up 

a harmonic structure the most notable feature of 

which is the pitch of the voice (f0). The articu- 

latory muscles shape a series of resonant cham- 

bers in the oral cavity that selectively amplify 

certain frequency bands ( F1, F2, F3 ), which in 

turn encode the vowels of speech. B) Speech en- 

gages all three muscular systems, singing word- 

less melodies predominantly engages the respi- 

ratory and laryngeal systems, while whistling 

predominantly engages the respiratory and ar- 

ticulatory systems. C) Participants heard novel 

melodies and then imitated them by singing 

without words or by whistling. Stimuli were ei- 

ther melodies or rhythms, and the figure shows 

an example of each. A sparse-sampling paradigm 

ensured that auditory scanner noise did not in- 

terfere with participant behaviour. 

w  

o

 

t  

p  

e  

5  

i  

m  

q  

e  

n  

t  

n  

b  

o  

t

 

t  

t  

b  

p  

a  

t

 

o  

d  

H  

g  

e  

I

2

 

c  

w

2

2

 

g  

(  

M  

s  

A  

t  

i  

r  

i  

(  

G  

v  

i  
ith the phase encoding direction inverted to support image unwarping

f susceptibility induced distortions. 

Functional images sensitive to the BOLD signal were collected with

he Center for Magnetic Resonance Research (CMRR) multi-band echo-

lanar imaging sequences ( Moeller et al., 2010 ) according to a sparse

vent-related sampling design ( Hall et al., 1999 ). Samples were collected

 or 7 s after imitation onset to eliminate auditory scanner noise dur-

ng stimulus presentation and task performance, as well as to minimize

ovement-related artefacts during image acquisition. These jittered ac-

uisition times were selected to ensure that data were collected near the

xpected maxima of the BOLD response after accounting for hemody-

amic lag. Images were collected with TR = 15 s, TA = 2 s, spatial resolu-

ion = 1.25 mm isotropic, slice gap = 0 mm, FOV = 160 × 160 × 120 mm,

umber of slices = 92, echo time = 18.6 ms, flip angle = 70°, multi-

and acceleration factor = 2. In each run 60 volumes were collected

ver 15 min and 15 s. Two volumes were collected and discarded prior

o each run. 

An additional run of BOLD-sensitive images was collected while par-

icipants remained at rest. The resting state runs had the same parame-

ers as task-based runs, with the exception that there were no silent gaps

etween volume acquisitions ( TR = 2 s) and 360 volumes were collected

er run. Resting state runs for two participants were not collected and

 third participant’s resting state run was ended after 174 volumes due

o specific absorption rate limitations. 

A second resting state BOLD sensitive dataset from a separate set

f participants was analysed as a replication sample ( N = 24). These

ata were collected using a Siemens Trio 3T scanner located at Royal

ollaway with TR = 1 s, spatial resolution = 3 mm isometric, slice

ap = 0.75 mm, FOV = 192 × 192 × 127 mm, number of slices = 34,

s

3 
cho time = 30 ms, flip angle = 78°, multi-band acceleration factor = 2.

n each run 400 volumes were collected over 6 min and 40 s. 

.4. Data availability 

The raw 7T imaging data, image processing pipeline, experiment

ode, and stimulus files are accessible through the Open Science Frame-

ork ( https://osf.io/zhb5q/ ). 

.5. Image analysis 

.5.1. Task-based runs 

Susceptibility induced distortions due to magnetic field inhomo-

eneity were corrected using the TOPUP algorithm in FSL v5.0.10

 Jenkinson et al., 2012 ; Smith et al., 2004 ). The remainder of the

RI data processing was performed with SPM12 and MATLAB ver-

ion R2017a ( Mathworks, 2017 ) running on an iMac (OSX 10.11.6).

ll images were realigned to the first echo-planar image in each func-

ional run. Runs were co-registered to the T 1 -weighted images for each

ndividual participant, and spatially normalized to the Montreal Neu-

ological Institute standard stereotaxic space ( Fonov et al., 2009 ) us-

ng a transformation matrix generated during tissue class segmentation

 Ashburner and Friston, 2005 ). Images were spatially smoothed using a

aussian kernel with Full Width Half Maximum (FWHM) equal to three

oxels. Head movement was regressed from the raw data by construct-

ng a General Linear Model (GLM) that predicted the BOLD signal from

ix head motion parameters and images were masked to grey matter. 

https://osf.io/zhb5q/
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.5.2. Resting state runs 

In addition to the steps described above, resting state functional im-

ges were slice-time corrected and normalized for global signal inten-

ity. The mean BOLD signal within white matter as well as cerebrospinal

uid were measured separately for each volume. The mean BOLD-signal

ithin grey matter was not included in the regression model as the

ean grey matter signal is colinear with the signal of interest to resting

tate functional connectivity analyses ( Bright et al., 2017 ; Murphy and

ox, 2017 ). The tissue-specific measures of global signal and six degrees

f head motion were modelled in a fixed-effects analysis that included

ata pre-whitening. The residuals from this analysis were retrieved for

urther analysis. 

.6. Analysis 

.6.1. Partial least squares analysis 

In light of the high degree of dimensionality of ultra-high field MRI,

e utilized non-rotated task-based Partial Least Squares (PLS) analysis

 McIntosh et al., 1996 ; McIntosh and Lobaugh, 2004 ) in lieu of the stan-

ard GLM approach ( Friston et al., 1994 ; Worseley and Friston, 1995 ).

nlike statistical parametric mapping, in which each voxel is evaluated

ndependently, PLS detects latent variables that capture a network of

orrelated voxels. This approach mitigates the “curse of dimensional-

ty ” by taking advantage of the spatial smoothness of fMRI data: since

djacent voxels are highly correlated and the distributed network of

rain regions that participate in the same network may exhibit similar

esponses to the experimental design, fMRI data are amenable to dimen-

ionality reduction. 

PLS is similar to principal components analysis (PCA) with the im-

ortant exception that solutions may be constrained to covariance struc-

ures that are of theoretical interest (e.g., that covary with experimen-

al conditions). We performed non-rotated task based PLS with the or-

hogonal contrasts 1) task versus rest and 2) whistling versus singing.

ean centring was applied at the group level. Significance was as-

essed via permutation test with 500 simulations at a confidence level

f 95%. Bootstrapping was performed with 500 simulations with 100

plit-halves to calculate bootstrap ratios (BSR) to assess the reliability
4 
f latent variables. We report grey matter voxels with correlations that

ere both unlikely under the null hypothesis according to the permuta-

ion tests ( p < 0.025 at either tail) and stable across bootstrap iterations

BSR > 2). This amounts to requiring that voxels are both statistically

ignificant (as assessed by permutation tests) and reliable (as assessed

y bootstrapping; Krishnan et al., 2011 ). 

.6.2. Resting state functional connectivity 

Whole brain correlation maps were computed from seeds in Regions

f Interest (ROIs) in the dLMC ( + /-41, -16, 39), vLMC ( + /-65, -4, 14),

nd tongue motor cortex ( + /-52, -6, 28). Regions of interest were de-

ned at 5 mm spheres around peak coordinates as localized by task

ased PLS and labels are based on established patterns of somatotopy

e.g., Takai et al., 2010 ). Group level significance was assessed using

he Statistical non-Parametric Mapping (SnPM) toolbox to perform per-

utation tests with 2 N iterations, variance smoothing with a FWHM of

panning three voxels to match the level of smoothing applied during

re-processing. Statistical maps were thresholded with a cluster-wise

rror rate of p < 0.05 calculated from a cluster forming threshold of

 < 0.001. Post-hoc tests were conducted to directly compare correlations

etween regions of interest to test the hypothesis that the larynx motor

ortices were more strongly functionally connected with each other than

ith a more proximal brain region that controls a different set of mus-

les. Pearson correlations were calculated between each pair of ROIs

ithin each participant to measure the degree of association between

rain regions. Group level inferences were determined by Welch’s paired

-tests to determine whether correlation coefficients deferred from zero.

he same analysis was repeated for both resting state datasets. 

. Results 

.1. PLS component 1: imitation versus rest 

The first latent variable was constrained to correlate with a contrast

etween imitative sound production by either singing or whistling ver-

us rest. These findings reflect regions of common activation for imita-

ive singing and whistling ( Fig. 2 and Table 1 ). This component loaded
Fig. 2. Results of PLS analysis. A) The first 

latent variable (red) reflects the contrast imi- 

tation > rest, regardless of whether imitation 

was performed by singing or by whistling and 

loads predominantly onto the vLMC and dLMC. 

The second latent variable reflects the contrast 

whistling > singing (blue) and loads predomi- 

nantly onto tongue primary motor cortex. Lat- 

eral surface views of the brain show the spa- 

tial relationship between the vLMC and dLMC 

as localized by LV 1 and tongue primary mo- 

tor cortex as localized by LV 2. Insets are axial 

slices at the level of the dLMC, tongue motor 

cortex, and vLMC respectively. dLMC: dorsal 

larynx motor cortex; LV: latent variable; vLMC: 

ventral larynx motor cortex. 
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Table 1 

Coordinates of activation for the first latent variable (Imitation versus Rest). Columns indicate the name of the brain region and its anatomical division for 

each activation along with coordinates in MNI space. Latent Variable (LV) scores indicate the magnitude of each activation and size indicates its extent in mm. 

dLMC: dorsal Larynx Motor Cortex; HG: Heschel’s Gyrus; PrCG: Precentral Gyrus; vLMC: ventral Larynx Motor Cortex. 

Table 1: Imitation > Rest 

Label Division X Y Z LV Score Size (mm) Label BA X Y Z LV Score Size (mm) 

Frontal Lobe Frontal Lobe 

dLMC-sulcal BA 4 -41 -16 39 0.0072 427 dLMC-sulcal BA 4 47 -9 38 0.0057 31 

dLMC-sulcal BA 4 41 -14 38 0.0082 106 

dLMC-gyral BA 4 -51 -11 49 0.0057 33 dLMC-gyral BA 4 53 -7 47 0.0087 77 

dLMC-gyral BA 4 51 -6 49 0.0054 30 

vLMC BA 43 -59 -16 13 0.007 38 vLMC BA 43 65 -4 14 0.0066 135 

Anterior Insula BA 13 -30 25 6 0.0054 344 

SMA BA 6 -2 3 65 0.0057 335 SMA BA 6 3 2 67 0.0043 80 

ACC BA 24/32 4 14 37 0.004 117 

PrCG BA 6 -57 1 33 0.0051 49 

PrCG BA 4 49 -7 42 0.0075 48 

PrCG BA 4 -60 1 19 0.0045 26 PrCG BA 4 52 -6 28 0.0036 32 

IFGop BA 44 44 8 -1 0.0042 212 

Temporal Lobe Temporal Lobe 

HG BA 41 -37 -35 15 0.0052 760 HG BA 41 53 -18 7 0.0047 75 

HG BA 41 43 -29 12 0.0041 29 

aSTG BA 22 -55 1 -3 0.007 134 aSTG BA 22 62 2 -5 0.0057 66 

aSTG BA 22 59 8 -7 0.0066 38 

STG BA 22 62 -25 0 0.0066 366 

STG BA 42 67 -28 13 0.0071 184 

STG BA 22 65 -16 7 0.0059 82 

pSTG BA 22 -56 -39 24 0.0059 36 

Subcortical Subcortical 

Thalamus MGN -2 -4 -7 0.0069 129 Thalamus MGN 15 -27 -9 0.004 30 

Thalamus MGN -13 -27 -10 0.0065 37 

Cerebellum Crus VI -24 -62 -19 0.0049 407 Cerebellum Crus VI 31 -63 -20 0.0046 606 

Cerebellum Crus VI -33 -58 -27 0.004 68 Cerebellum Crus VI 15 -65 -14 0.0034 26 
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1  
trongly onto voxels in the primary motor cortex in both hemispheres,

ncluding both the dLMC and vLMC. Additional regions within the mo-

or network were also activated including the supplementary motor area

SMA), anterior cingulate cortex (ACC), and Cerebellum (Supplemen-

ary Material 1). Brain regions within the auditory network were ev-

dent, presumably due to either perceiving the target stimulus or pro-

essing auditory feedback. These brain regions included the primary au-

itory cortex and a large extent of the Superior Temporal Gyrus (STG),

articularly in the right hemisphere, as well as the medial geniculate

ucleus of the thalamus. 

.2. PLS component 2: whistling versus singing 

The second latent variable was constrained to correlate with a con-

rast between imitative whistling versus singing. Surprisingly, whistling

ctivated the dLMC and vLMC more strongly than singing in addition

o the primary motor lip and tongue areas that were expected given the

ovements required to produce a whistled sound ( Fig. 2 and Table 2 ).

nstead, singing more strongly activated regions elsewhere in the motor

etwork including the cerebellum and basal ganglia, temporal lobe audi-

ory regions including the STG, Superior Temporal Sulcus (STS), Middle

emporal Gyrus (MTG) and Temporal Pole. Non-audio motor regions

ere also activated more strongly during singing, including the Inferior

rontal Gyrus pars orbitalis (IFGorb), anterior insula, Claustrum, and

mygdala (Supplementary Material 2). 

.3. Resting state connectivity 

Seeds in the right and left dLMC and vLMC had functional connectiv-

ty throughout sensorimotor cortex, including mutual functional connec-

ivity between the two larynx areas. However, functional connectivity

etween the dLMC and vLMC was no greater than between either lar-

nx area and tongue primary motor cortex, suggesting that functional

onnectivity between the two larynx motor areas may be part of the

roader pattern of connectivity within primary motor cortex rather than
5 
 result of their mutual involvement in laryngeal and respiratory motor

ontrol (Supplementary Material 3). Further functional connectivity was

bserved with premotor cortex (BA 6), postcentral gyrus (BA 1,2,3), the

nsula (BA 13), anterior cingulate gyrus (BA 24), middle cingulate gyrus

BA 31), supplementary motor area (BA 6), and the inferior frontal gyrus

ars opercularis (BA 44; Supplementary Material 4). 

. Discussion 

We report the first ultra-high field fMRI comparison of singing along-

ide whistling to contrast sound production with and without involve-

ent of the laryngeal sound source. Unexpectedly, given the reduced

aryngeal involvement in whistling, we observed that both the dLMC

nd vLMC were not only engaged by whistling, but more strongly than

inging. The strong expiratory drive of whistling may account for the

ommon activation in these brain regions across modes of sound pro-

uction. One previous study of whistling observed activation that may

ave been consistent with the vLMC ( Dresel et al., 2005 ), but without

xplicit localisation of the larynx areas this correspondence could not

e confirmed. We suggest that in addition to their established roles in

aryngeal motor control, the dLMC and vLMC also contribute to respi-

atory motor control and may serve to integrate two muscular systems

hat require mutual coordination to support important behaviours such

s speaking, singing, and airway protection. 

That neither of the larynx motor areas in the human brain are specific

o laryngeal motor control may be due to the placement of the larynx

ithin the airway. Voiced sounds are produced by the vibration of the

ocal folds, the tension of which determines vocal pitch ( Hollien and

oore, 1960 ; Titze, 2008 ; Titze et al., 1989 ; Titze and Story, 2002 ).

owever, the laryngeal muscles do not actively vibrate the vocal folds,

ut instead they determine the configuration of the larynx while vocal

old vibration is produced passively by the passage of air ( Story and

itze, 1995 ; Titze, 1989 ). In addition to its role in communication, the

arynx also serves as a mechanism for airway protection ( Dua et al.,

997 ) and participates in reflexive movements during swallowing and
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Table 2 

Latent variable two (Whistling versus Singing). Columns indicate the name of the brain region and its anatomical division for each activation along with coordinates in MNI space. Latent Variable (LV) scores 

indicate the magnitude of each activation and size indicates its extent in mm. dLMC: dorsal Larynx Motor Cortex; HG: Heschel’s Gyrus; IFGorb: Inferior Frontal Gyrus pars orbitalis; IFGop: Inferior Frontal Gyrus 

pars opercularis; MTG: Middle Temporal Gyrus; PrCG: Precentral-Gyrus; RO: Rolandic Operculum; STG: Superior Temporal Gyrus; STS: Superior Temporal Sulcus; vLMC: ventral Larynx Motor Cortex. 

Table 2a: Whistling > Singing 

Left Hemisphere Right Hemisphere 

Label Division X Y Z LV Score Size (mm) Label Division X Y Z LV Score 

Size 

(mm) 

Fontal Lobe Fontal Lobe 

dLMC-sulcal BA 4 -49 -11 36 0.0076 385 dLMC-sulcal BA 4 43 -13 37 0.0096 66 

vLMC BA 43 61 -15 20 0.0067 34 

PrCG BA 4 -54 -11 38 0.0062 71 PrCG BA 4 44 -10 37 0.0086 31 

PrCG BA 4 65 -6 27 0.0105 865 

RO BA 13 53 -18 13 0.0060 64 

RO BA 13 44 -12 21 0.0059 92 

Parietal Lobe Parietal Lobe 

PoCG BA 3 -45 -19 40 0.0063 48 –

Temporal Lobe Temporal Lobe 

– Parahippocampal 

Gyrus 

BA 28 26 -16 -24 0.0083 32 

Subcortical Subcortical 

– Cerebellum Crus VI 20 -62 -17 0.0045 26 

Table 2b: Singing > Whistling 

Frontal Lobe Frontal Lobe 

IFGorb BA 47 -45 37 -12 0.0040 237 IFGorb BA 47 48 38 -9 0.0040 32 

IFGorb BA 47 -34 29 -13 0.0040 127 

IFGorb BA 47 -30 35 -10 0.0041 95 

IFGorb BA 47 -42 42 -2 0.0041 64 

IFGorb BA 47 -40 25 -5 0.0041 41 

IFGorb BA 47 -39 25 1 0.0041 29 

IFGorb BA 47 -28 22 -13 0.0041 26 

IFGop BA 44 -51 12 1 0.0041 27 

PrCG BA 6 53 3 8 0.0040 236 

RO 58 -6 9 0.0042 42 

Subgenual ACC BA 32 8 49 -12 0.0041 75 

Insula BA 3 -35 10 -7 0.0040 149 

Anteria Insula BA 13 -39 17 5 0.0041 75 

Anteria Insula BA 13 -32 24 -2 0.0041 37 

Temporal Lobe Temporal Lobe 

STG BA 22 -58 -10 -1 0.0040 164 

STG BA 22 -48 -5 -8 0.0041 26 

STG BA 22 -59 -3 -5 0.0040 73 

aSTG BA 22 53 2 -8 0.0040 676 

STS BA 21 56 -24 -3 0.0040 236 

MTG BA 21 -60 -12 -4 0.0040 61 

MTG BA 21 -49 -8 -15 0.0040 50 

MTG BA 21 -58 -1 -16 0.0040 45 

MTG BA 21 -49 0 -28 0.0041 39 

Temporal Pole BA 38 -43 13 -29 0.0040 80 Temporal Pole BA 38 45 18 -22 0.0040 39 

Temporal Pole BA 38 -49 15 -17 0.0041 76 

Temporal Pole BA 38 -39 3 -25 0.0041 70 

Parahippocampal 

Gyrus 

BA 34 -24 -4 -23 0.0041 138 Parahippocampal 

Gyrus 

BA 34 23 1 -14 0.0041 36 

Subcortical Subcortical 

Cerebellum Crus VI -27 -39 -29 0.0041 108 Cerebellum Crus VI 37 -56 -22 0.0041 55 

Cerebellum Crus V -24 -32 -17 0.0040 81 

Cerebellum Crus I -26 -84 -21 0.0041 42 

Claustrum -30 10 1 0.0040 27 

Basal Ganglia Caudate 

Nucleus 

-2 8 -4 0.0040 79 

Amygdala -26 0 -22 0.0041 85 

6
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o  
etching ( Ardran and Kemp, 1952 ; Lang et al., 2002 ) to form a secondary

losure below the epiglottis ( Vilkman et al., 1996 ). 

An informal laryngoscopic investigation revealed that whistled notes

re often interspersed with a light closure of the glottis (see Supplemen-

ary Materials 5 and 6), which is presumed to be part of the mechanism

or the cessation of airflow. Glottal closure has previously been shown

o activate the dLMC, though it is unknown whether it contributes to

ctivation of the vLMC ( Brown et al., 2008 ). However, it is sensible to

uppose that part of the LMCs joint mechanism of laryngeal and airway

ontrol should include the closure of the glottis. Regardless, this reduced

nvolvement of the larynx during whistling is unlikely to account for the

reater activation of the LMCs. 

To date there have been few demonstrations that the dLMC and

LMC may have dissociable functions. While the dLMC is often reported

n the absence of the vLMC, it seems likely that this merely reflects

ifferences in the ease with which these areas are detected. This may

e due to the greater abundance of large descending motor neurons in

he dLMC ( Brodmann, 1909 ; Juda š and Cepanec, 2010 ; Vogt, 1910 ),

hich may generate a larger BOLD signal. For instance, simple phona-

ion (singing without words) activates only the dLMC in some studies

 Belyk et al., 2018b ; Brown et al., 2008 ) but both the dLMC and vLMC

n others ( Belyk et al., 2016 ). Furthermore, the sulci near the vLMC are

ore variable, which is expected to reduce rates of detection in group

evel analyses ( Eichert et al., 2020b ). Hence, while we observed stronger

vidence for the involvement of the dLMC compared to the vLMC in inte-

rating laryngeal and respiratory control, this may reflect differences in

he detectability rather than function. One interesting exception is that

he application of an external puff of air on the surface of the larynx

ay activate the vLMC, suggesting either that the vLMC has some sen-

ory functionality or that this manipulation triggers airway protective

eflexes that that involve the vLMC ( Miyaji et al., 2014 ). 

.1. A note on nomenclature 

Early brain imaging studies disagreed on an appropriate label for

hat has come to be referred to as the dLMC ( Brown et al., 2008 ;

oucks et al., 2007 ; Simonyan et al., 2007 ). The present findings, con-

ribute to growing evidence that specificity of function implied by the

abel LMC is not borne out by the data ( Brown et al., 2021 , 2008 ;

oucks et al., 2007 ). While we do not undertake to reform the existing

omenclature here, we note that there is a growing need to do so. 

.2. Respiratory motor control 

The human brain has a direct projection from cortex to the nu-

leus ambiguus, the brainstem nucleus that exerts direct control over

he laryngeal muscles ( Iwatsubo et al., 1990 ; Kuypers, 1958a ). This di-

ect pathway is absent in the brains of monkeys ( Jürgens and Ehrenre-

ch, 2007 ; Simonyan and Jürgens, 2003 ), and less robust in the brains

f non-human apes ( Kuypers, 1958b ). However, this novel arrangement

n human laryngeal motor control is not sufficient to explain the joint

ortical control of laryngeal and respiratory functions observed in the

resent study. 

Respiratory motor control is coordinated by the nucleus retroam-

iguus ( Figure 3 ) which is a brainstem nucleus of the medulla located

djacent to the nucleus ambiguous ( Subramanian and Holstege, 2009 ).

he nucleus retroambiguus contains upper motor neurons that project

o lower motor neuron nuclei that innervate respiratory muscles such as

he abdomen, pelvic floor, and intercostal muscles ( Vanderhorst et al.,

000 ). The nucleus retroambiguus also projects to laryngeal motor neu-

ons in the nucleus ambiguus ( VanderHorst et al., 2001 ). 

However, this retroambiguus-ambiguus projection appears to be uni-

irectional, such that cortical control over the nucleus ambiguus alone

s unlikely to yield voluntary respiratory motor control. We therefore

ypothesize that both human LMCs have direct projections to the nu-

leus retroambiguus in addition to the direct projections to the nucleus
7 
mbiguus that have already been observed. Such a parallel projection

o both nucleus ambiguus and retroambiguus has not yet been identi-

ed in humans but is observed in the analogous structures of the avian

ong system, which is a strong model of the human vocal motor system

 Gahr, 2000 ; Petkov and Jarvis, 2012 ; Wild, 1993 ; Wild et al., 2000 ). 

Observations of the direct projection to nucleus ambiguus have come

rom natural experiments due to cerebrovascular events ( Iwatsubo et al.,

990 ; Kuypers, 1958a ). In these studies, large cortical lesions caused the

xons of upper motor neurons to degenerate, and degenerating axons

ere traced among more intact white matter. However, the lesions all

esulted from cerebrovascular accidents of the middle cerebral artery

MCA). This artery supplies much of the speech-motor related cortex

ncluding both the vLMC and dLMC, hence the prevalence of speech-

otor and swallowing disorders following MCA infarcts ( Heinsius et al.,

998 ; Theys et al., 2011 ). Consequently, it is not known whether the

irect connection to the nucleus ambiguus originates from one or both

arynx motor areas. 

We hypothesize that the direct connection to the nucleus ambiguous

tems from both the vLMC and dLMC in light of the lack of strong func-

ional connectivity between these cortical larynx areas. We have previ-

usly hypothesized that the dLMC may have a yet detected direct pro-

ection to the nucleus retroambiguus ( Belyk and Brown, 2017 ), consis-

ent with the analogous pathway in songbirds ( Gahr, 2000 ; Petkov and

arvis, 2012 ; Wild, 1993 ; Wild et al., 2000 ). We now further hypoth-

size that the human vLMC may also project directly to the nucleus

etroambiguus considering the evidence provided by the current exper-

ment that both larynx controlling regions integrate respiratory motor

ontrol. 

.3. Respiratory motor control of species-typical vocalisations 

While non-human primates have relatively poor ability to learn novel

ocal behaviours ( Hage and Nieder, 2016 ; Nieder and Mooney, 2019 ),

hey can strategically select them to deploy their innate repertoire of

ocalisation ( Pierce, 1985 ). This behaviour requires some degree of vol-

ntary control over the timing of laryngeal-respiratory action in ani-

als that lack the mechanisms provided by the human vLMC/dLMC

ürgens (1974) . 

In human and non-human primates alike, the control of innate vocal-

sations is controlled separately by a pathway which circumvents motor

ortex ( Jürgens, 2002 ). The periaqueductal gray (PAG) of the brainstem

rganises responses to affective stimuli, and as such it receives exten-

ive inputs from the limbic system ( Dujardin and Jürgens, 2005 ) and

as outputs to a plurality of lower motor nuclei relevant to vocalisation

roviding integrated control over multiple muscle groups ( Thoms and

ürgens, 1987 ). In monkeys ( Saimiri sciureus ), electrical stimulation of

he PAG elicits fully formed species-typical vocalisations, including both

he laryngeal and respiratory components ( Jürgens and Pratt, 1979a ,

979b ). 

A region of cingulate cortex provides cortical control over the PAG.

esions to the cingulate cortex prevent the initiation of operantly con-

itioned vocalizations, but spare responses to stimuli that would nor-

ally elicit an innate vocalisation ( Aitken, 1981 ; Sutton et al., 1981 ,

974 ). The homologous pathway in humans is activated during verbal

xpressions of emotion ( Barrett et al., 2004 ; Belyk and Brown, 2016 ;

attendorf et al., 2013 ). This cingulate-PAG axis provides a mechanism

or coordinated laryngeal-respiratory control of innate species-typical

ocalisations, which is conserved across primates. In humans, this path-

ay exists alongside the novel adaptions in motor cortex which support

he flexibility of human vocal behaviour. 

.4. Selective pressures on respiratory motor control 

Strong vocal production learning abilities are uncommon in mam-

als, though they have been documented in a handful of clades. The list

f strong mammalian vocal learners is notably skewed towards species
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Fig. 3. Schematic of descending motor 

pathway. Cortico-bulbar pathways (dotted 

line) have been observed projecting to the 

nucleus ambiguus though it is not presently 

known whether these axons originate from the 

vLMC, the dLMC or both. We have hypoth- 

esized that both areas project to the nucleus 

retroambiguus as well. 
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hose evolutionary path has placed particular constraints on respira-

ory motor control. VPL is most abundantly observed among aquatic

ammals including cetaceans ( Janik, 2014 ; King and Sayigh, 2013 ;

oad et al., 2000 ) and pinnipeds ( Ralls et al., 1985 ; Ravignani et al.,

016 ; Stansbury and Janik, 2019 ) which must coordinate breathing with

outs of diving to manage the supply of oxygen, buoyancy, and am-

ient ocean pressure ( Kooyman, 1973 ; Lillie et al., 2017 ; Roos et al.,

016 ). Some species of elephants have demonstrated vocal production

earning ( Poole et al., 2005 ; Stoeger et al., 2012 ), which may be related

o the unique demands of respiratory snorkelling West (2001) as well

s the possibly aquatic ancestry of these species ( Gaeth et al., 1999 ).

ats exhibit a range of socially communicative vocalizations in addi-

ion to echolocation ( Knörschild, 2014 ; Vernes and Wilkinson, 2019 ;

ernes, 2016 ). Notably, bats not only integrate respiratory control with

cho location calls that are used for navigation, but the muscles of respi-

ation may interact directly with the muscular control of winged flight

 Lancaster et al., 1995 ; Suthers et al., 1972 ). In this company, humans

ppear to be the odd-mammal out in lacking a clear selective pressure

or enhanced respiratory motor control beyond its use in communication

 Verhaegen et al., 2002 ). 

.5. Limitations 

The present study was based on a relatively small sample of singers

ue to the constraints of ultra-high field fMRI. We have mitigated the

ow power associated with this small sample size by utilising Partial

east Squares analysis, which considerably improves the sensitivity and

eliability of statistical maps ( Grady et al., 2020 ). PLS analyses with

ample sizes in the range of the present study have reliability equiv-

lent to a standard univariate analysis of a moderately large sample.

his advantage is derived in part from analysing networks of correlated

rain regions rather than a mass of independent voxels. However, Grady

t al. caution that this should not be used as a substitute for thought-

ul experimental design and well-motivated sample sizes. The present

tudy tested a-priori spatially specific hypotheses such that the trade-off

etween sample size and spatial resolution was consistent with the aims

f the experiment. 
8 
. Conclusion 

The dLMC and vLMC are two larynx motor areas in the human brain

hat are important cortical structures for the voluntary control of the

oice. We observed that both areas are also active during whistling,

espite the reduced laryngeal involvement in that mode of sound pro-

uction. We suggest that neither the dLMC nor the vLMC are strictly

aryngeal, and that both may integrate laryngeal and respiratory motor

ontrol. Some clue to the separate functions of these brain regions may

e found in the complex cytoarchitecture of the vLMC, which appears

o be intermediate to primary motor and primary somatosensory cortex.

egardless, coordination with respiratory motor control appears to be a

biquitous partner to laryngeal motor control as indeed the larynx sits

n the airway and any action of the larynx is likely to affect respiratory

ffort. This has implications for our understanding of human brain evo-

ution to the extent that it alters our understanding of a well-documented

pecialisation for speech . 
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