64 research outputs found

    A versatile laser-based apparatus for time-resolved ARPES with micro-scale spatial resolution

    Full text link
    We present the development of a versatile apparatus for a 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved μ\mu-ARPES). With a combination of tunable spatial resolution down to \sim11 μ\mum, high energy resolution (\sim11 meV), near-transform-limited temporal resolution (\sim280 fs), and tunable 1.55 eV pump fluence up to \sim3 mJ/cm2^2, this time-resolved μ\mu-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi2_2Se3_3 with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in-situ exfoliation, we performed time-resolved μ\mu-ARPES on a \sim30 μ\mum few-layer-thick flake of transition metal dichalcogenide WTe2_2, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated and twisted materials

    Genetic Diversity of the Cestode Echinococcus multilocularis in Red Foxes at a Continental Scale in Europe

    Get PDF
    Echinococcus multilocularis is a tapeworm of the red fox, which represents a considerable health threat to respectively infected humans. Main endemic areas are located in China, Siberia, and central Europe. Alarmed by an emerging or reemerging situation in Europe, the question of how the parasite gets spatially and temporally spread and transmitted becomes essential to prepare appropriate control programs. The question was tackled by using genetic data on a large sample size of E. multilocularis adult stage tapeworms, combined with geographical site location data input. The historically documented endemic area, represented by the northern Alpine arch, was shown to harbour the highest genetic richness and diversity, as compared to surrounding areas in northern and eastern Europe. The spatial and temporal spread of different E. multilocularis genotypes in Europe seems to be ruled by a founder event, linked to exportation of parasites from the central core to newly identified (western and eastern) areas or subregions, where these parasites could subsequently disseminate under geographical separation from the original foci

    Las obsesiones antes de Freud: historia y clínica

    Full text link

    Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells

    Get PDF
    Protective T cell responses against tumors require the production of Interferon gamma (IFN-γ). However, tumor-infiltrating T cells (TILs) gradually lose their capacity to produce IFN-γ and therefore fail to clear malignant cells. Dissecting the underlying mechanisms that block cytokine production is thus key for improving T cell products. Here we show that although TILs express substantial levels of Ifng mRNA, post-transcriptional mechanisms impede the production of IFN-γ protein due to loss of mRNA stability. CD28 triggering, but not PD1 blocking antibodies, effectively restores the stability of Ifng mRNA. Intriguingly, TILs devoid of AU-rich elements within the 3ʹuntranslated region maintain stabilized Ifng mRNA and produce more IFN-γ protein than wild-type TILs. This sustained IFN-γ production translates into effective suppression of tumor outgrowth, which is almost exclusively mediated by direct effects on the tumor cells. We therefore conclude that post-transcriptional mechanisms could be modulated to potentiate effective T cell therapies in cancer

    Variation in species light acquisition traits under fluctuating light regimes: implications for non‐equilibrium coexistence

    No full text
    Resource distribution heterogeneity offers niche opportunities for species with different functional traits to develop and potentially coexist. Available light (photosynthetically active radiation or PAR) for suspended algae (phytoplankton) may fluctuate greatly over time and space. Species‐specific light acquisition traits capture important aspects of the ecophysiology of phytoplankton and characterize species growth at either limiting or saturating daily PAR supply. Efforts have been made to explain phytoplankton coexistence using species‐specific light acquisition traits under constant light conditions, but not under fluctuating light regimes that should facilitate non‐equilibrium coexistence. In the well‐mixed, hypertrophic Lake TaiHu (China), we incubated the phytoplankton community in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Incubations at constant depths received only the diurnal changes in light, while the moving bottles received rapidly fluctuating light. Species‐specific light acquisition traits of dominant cyanobacteria (Anabaena flos‐aquae, Microcystis spp.) and diatom (Aulacoseira granulata, Cyclotella pseudostelligera) species were characterized from their growth–light relationships that could explain relative biomasses along the daily PAR gradient under both constant and fluctuating light. Our study demonstrates the importance of interspecific differences in affinities to limiting and saturating light for the coexistence of phytoplankton species in spatially heterogeneous light conditions. Furthermore, we observed strong intraspecific differences in light acquisition traits between incubation under constant and fluctuating light – leading to the reversal of light utilization strategies of species. This increased the niche space for acclimated species, precluding competitive exclusion. These observations could enhance our understanding of the mechanisms behind the Paradox of the Plankton

    Human T cells employ conserved AU-rich elements to fine-tune IFN-γ production

    No full text
    Long-lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro-inflammatory cytokine IFN-γ is a key effector molecule herein. We recently showed that in murine T cells the production of IFN-γ is tightly regulated through adenylate uridylate–rich elements (AREs) that are located in the 3′ untranslated region (UTR) of the Ifng mRNA molecule. Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti-tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR-Cas9 technology, we deleted the ARE region from the IFNG 3′ UTR in peripheral blood-derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of IFN-γ protein-producing T cells. Importantly, combining MART-1 T cell receptor engineering with ARE-Del gene editing showed that this was also true for antigen-specific activation of T cells. MART-1-specific ARE-Del T cells showed higher percentages of IFN-γ producing T cells in response to MART-1 expressing tumor cells. Combined, our study reveals that ARE-mediated posttranscriptional regulation is conserved between murine and human T cells. Furthermore, generating antigen-specific ARE-Del T cells is feasible, a feature that could potentially be used for therapeutical purposes

    Genetic diversity of Echinococcus multilocularis on a local scale.

    No full text
    Echinococcusmultilocularis is the causative agent of human Alveolar Echinococcosis (AE), and it is one of the most lethal zoonotic infections in the Northern Hemisphere. In France, the eastern and central regions are endemic areas; Franche-Comté, Lorraine and Auvergne are particularly contaminated. Recently, several human cases were recorded in the French Ardennes area, a region adjacent to the western border of the E. multilocularis range in France. A previous study in this focus described a prevalence of over 50% of the parasite in red foxes. The present study investigated the genetic diversity of adult worms collected from foxes in a 900km(2) area in the Ardennes. Instead of a conventional mitochondrial target (ATP6), two microsatellite targets (EmsB and NAK1) were used. A total of 140 adult worms isolated from 25 red foxes were genotyped. After hierarchical clustering analyses, the EmsB target enabled us to distinguish two main assemblages, each divided into sub-groups, yielding the differentiation of six clusters or assemblage profiles. Thirteen foxes (52% of the foxes) each harbored worms from at least two different assemblage profiles, suggesting they had become infected by several sources. Using the NAK1 target, we identified 3 alleles, two found in association with the two EmsB assemblages. With the NAK1 target, we investigated the parasite breeding system and the possible causes of genetic diversification. Only one fox harbored hybrid worms, indicative of a possible (and rare) occurrence of recombination, although multiple infections have been observed in foxes. These results confirm the usefulness of microsatellite targets for assessing genetic polymorphism in a geographically restricted local range
    corecore