
Encapsulated PGD Algebraic Toolbox Operating
with High‑Dimensional Data

P. Díez1,2 · S. Zlotnik1,2 · A. García‑González1,2 · A. Huerta1,2

Abstract
In its original conception, proper generalized decomposition (PGD) provides explicit parametric solutions, denoted as com-
putational vademecums or digital abacuses, to parametric boundary value problems. The PGD approach is extended
here to devise a set of algebraic tools enabling to operate with multidimensional tensor data. These tools are designed to
store, compress and perform basic operations (in particular divisions) with tensors in separable format. These tools are
directly producing the computational vademecums for the resulting high-dimensional tensor data. Thus, the
general methodology enables performing nontrivial operations (storage, compression, division, solving linear
systems of equations...) for multi-dimensional tensor data. The idea is based on the principle of the PGD separation, that
produces a separable least squares approximation of any multidimensional function. The PGD compression is a
particular case, extensively used in practice to compact the separable solution without loss of accuracy. Here, this
concept is applied to algebraic tensor structures that are also seen as functions in multidimensional Cartesian
domains. Moreover, a straightforward extension of this concept is devised to operate with multidimensional objects
stored in the separable format. That allows creating a toolbox of PGD arithmetic operators that is publicly released at
https ://git.lacan .upc.edu/zlotn ik/algeb raicP GDtoo ls. Numerical tests dem-onstrate the performance and efficiency of the
toolbox, both for tensor data handling and operation and also in applications pertaining to the discretized version of
boundary value problems.

1 Introduction

Algebraic separation of multidimensional tensors has exten-
sive applications in methods dealing with multidimensional
data, and is therefore object of intensive research efforts [12,
13, 16]. Tensor separation is a very efficient strategy for
data compression and opens the door to operate in higher
dimensions following incremental-iterative approaches [1,
2]. These operations with high-dimensional tensors are a key
ingredient in the solution of parametric problems in compu-
tational mechanics, in particular for stochastic models [7, 8].

Proper generalized decomposition (PGD) [4, 5] produces
separated representations of multidimensional functions. In
the discrete format, this is equivalent to obtain separated

format of multidimensional tensor data. The initial idea is
to obtain a separated representation of the (unknown) solu-
tion of some boundary-value problem. Here, the same idea
is exploited to obtain separable approximations of multidi-
mensional objects that result of operating with other multi-
dimensional objects, in particular when the original objects
are already expressed with a separable representation, as
already analyzed in [15].

The aim of this paper is to introduce a general method-
ology to operate with separable representation of multidi-
mensional data. First, it is natural to recall and provide an
algorithmic description of the PGD least squares projection
in a functional framework, see [6]. These functions are read-
ily represented by tensorial discretizations (a function with
one argument is discretized as a vector, with two arguments
in a cartesian domain as a matrix, with three as a tensor of
order three...).

1.1 Background and Notation

The multidimensional data is represented by a real-valued
function F taking values in 𝛺 ⊂ ℝ

�
� . The domain � is

 * P. Díez
pedro.diez@upc.edu

1 Laboratori de Càlcul Numèric, E.T.S. de Ingeniería de
Caminos, Universitat Politècnica de Catalunya, Barcelona,
Spain

2 International Centre for Numerical Methods in Engineering,
CIMNE, Barcelona, Spain

http://orcid.org/0000-0001-6464-6407
https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-019-09378-0&domain=pdf

assumed to be Cartesian, that is � is the Cartesian product
�
�
 simple sectional domains �i , for i = 1, 2,… , �

�
 . Typi-

cally, the sectional domains are real intervals, �i =]ai, bi[,
with ai < bi , where the variable xi ranges (the term sectional
refers to one individual coordinate or dimension).

Definition 1 The function F is said to be separable if for
some integer value M, there exists a set of functions f m

i
 tak-

ing values in �i , for i = 1, 2,… , �
�
 and m = 1, 2,… ,M , such

that

Note that this is the form adopted by the PGD solutions.

Remark 1 (Dealing with vector coordinates) For the sake of
a simpler presentation, each coordinate xi for i = 1, 2,… , �

�

is taken as ranging in a 1D domain]ai, bi[. In the general
case the coordinates belong to arbitrary domains 𝛺i ⊂ ℝ

di
with integer dimensions di ≥ 1 . A particularly interesting
case is taking the first coordinate x1 as describing the physi-
cal domain (thus, typically in ℝ2 or ℝ3) and the rest as scalar
parameters. In the remainder, for the sake of a clearer pres-
entation and with no loss of generality, it is assumed that all
the coordinates are scalar magnitudes.

The �
�
-dimensional domain � is discretized with

a Cartesian mesh resulting of discretizing each of the
sectional domains �i with ni nodes denoted by xk

i
 , for

k = 1, 2,… , ni . In the particular case of selecting a uniform
grid in 1D sectional domains �i =]ai, bi[, these nodes read
xk
i
= ai + (bi − ai)(k − 1)∕(ni − 1) for i = 1, 2,… , �

�
 and

k = 1, 2,… , ni . Note however that the proposed methodol-
ogy is not restricted to uniformly distributed nodes. Then,
multidimensional function F is readily represented by the
tensor of its nodal values F ∈ ℝ

n1×n2×⋯×n
�� , such that

The separability of F (the discrete representation of F) is
defined as follows.

Definition 2 Tensor F ∈ ℝ
n1×⋯×n

�� is said to be separa-
ble if for some integer value M, there exist a set of vectors
fm
i
∈ ℝ

ni for i = 1, 2,… , �
�
 and m = 1, 2,… ,M such that

Note that Definitions 1 and 2 are equivalent in the sense
that vectors f

i
m are seen as containing the nodal values of f

i
m

in the grid of points x
i
k for i = 1, 2, … , �

�
 , m = 1, 2, … ,

M

(1)F(x1, x2,… , x
�
�

) =

M∑
m=1

f m
1
(x1)f

m
2
(x2)⋯ f m

�
�

(x
�
�

).

[F]k1k2…k
��

= F(x
k1
1
, x

k2
2
,… , x

k
��

�
�

)

(2)F =

M∑
m=1

fm
1
⊗ fm

2
⊗⋯⊗ fm

�
�

and k = 1, 2,… , ni , that is [fm
i
]k = f m

i
(xk

i
) . The aim of this

paper is to present numerical strategies to produce and oper-
ate with separable objects, mainly in their tensorial format.
The functional format is here equivalent to the tensorial for-
mat. It is used in the presentation because the basis of the
PGD is formulated in a functional setting as a method to
solve parametric PDEs.

1.2 Layout of the Paper

First, in Sect. 2, the PGD compression based on the least-
squares higher-order projection introduced in [14] and algo-
rithmically detailed in [6] is reviewed and presented both in
the functional and tensorial setup, including here the new
feature of using nontrivial least-squares norms, that is the
possibility of having different projection criteria (different
norms in the least-squares fitting) for each dimension. This
is discussed in Sect. 2.3. A synthetic algorithm is also pre-
sented in Sect. 2.2, which is accompanied by a downloadable
matlab implementation.

The PGD compression is generalized in Sect. 3 to define
operations between separable approximations. The sum and
product are considered as the straightforward operations.
Note that operators are a priori very simple. However, in prac-
tice, they require a compression to be effective. Section 3.1
describes how to perform a nontrivial operation between two
tensors in separable format, the Hadamard division. Also here,
a synthetic algorithm is presented to illustrate the implementa-
tion available in the open source repository. Section 3.2 pre-
sents the strategy to solve linear systems of equations arising
from the parametric version of a discretized boundary value
problem (using the preferred method, viz. finite elements, finite
differences, boundary elements...). In practice, it requires two
input tensors (one representing the parametric matrix, one rep-
resenting the parametric vector). All the parametric sectional
dimensions have to be of the same type in both tensors. The
first dimension (the so-called space dimension) has to be com-
patible: a square matrix for the left-hand-side term and a vector
of the same length for the right-hand-side.

Section 4 presents a set of examples illustrating the capa-
bilities of the presented algorithms for all the operations
analyzed.

2 Least‑Squares PGD Separation
and Compression

2.1 Problem Statement in the Functional
Framework

A bilinear form A(⋅, ⋅) taking values in L2(�) × L2(�) is
expressed in terms of how it affects rank-one separable

functions, that is functions that can be expressed in the
form of (1) with M = 1 . Namely, for two rank-one func-
tions like F(x1, x2,… , x

�
�

) = f1(x1)f2(x2)… f
�
�

(x
�
�

) and
G(x1, x2,… , x

�
�

) = g1(x1)g2(x2)… g
�
�

(x
�
�

) , the form reads

where the sectional symmetric and positive definite
bilinear forms ai(⋅, ⋅) take values in L2(�i) × L2(�i) for
i = 1, 2,… , �

�
.

The definition of A(⋅, ⋅) for general separable functions of
arbitrary ranks (not only for rank one, as in (3), is introduced
as follows. Let F and G be such that

it is assumed that

This definition is such that A(⋅, ⋅) inherits the bilinear sym-
metric and positive definiteness properties of the sectional
forms ai(⋅, ⋅) , i = 1,… , �

�
.

Remark 2 (Bilinear nature of form A(⋅, ⋅)) Note that the form
A(⋅, ⋅) defined from (3), (4) and the set of bilinear sectional
forms ai(⋅, ⋅) is itself bilinear, symmetric and positive defi-
nite. The symmetry and the homogeneity for scalars, that is

are obvious from (4) and the symmetry of the sectional
forms. The linearity of each argument is readily shown by
considering a function

and observing that

(3)A(F,G) =

�
�∏

i=1

ai(fi, gi)

F(x1, x2,… , x
�
�

) =

M∑
m=1

f m
1
(x1)f

m
2
(x2)… f m

�
�

(x
�
�

) ,

G(x1, x2,… , x
�
�

) =

M̂∑
m̂=1

gm̂
1
(x1)g

m̂
2
(x2)… gm̂

�
�

(x
�
�

)

(4)A(F,G) =

M∑
m=1

M̂∑
m̂=1

�
�∏

i=1

ai(f
m
i
, gm̂

i
)

A(F,G) = A(G,F) and A(�F,G) = �A(F,G)

F̃(x1, x2,… , x
�
�

) =

M̃∑
m̃=1

f̃ m̃
1
(x1)f̃

m̃
2
(x2)… f̃ m̃

�
�

(x
�
�

)

A(F + F̃,G) =

M∑
m=1

M̂∑
m̂=1

�
�∏

i=1

ai(f
m
i
, gm̂

i
)

+

M̃∑
m̃=1

M̂∑
m̂=1

�
�∏

i=1

ai(f̃
m̃
i
, gm̂

i
)

=A(F,G) + A(F̃,G)

The positive definiteness results from the positive definite-
ness of the sectional forms.

Remark 3 (Description of bilinear form A(⋅, ⋅) with only one
separated term) The form A(⋅, ⋅) is defined in Eq. (3) with
only one product, and not with a sum of these terms as in,
for instance, [17]. In a more general setup, the operator is
often characterized by an affine decomposition with n terms,
that is

The form adopted in Eq. (3), has only one term because
it is sufficient to properly represent a standard norm in
L2(�) × L2(�) by introducing the sectional norm in each
of the tensorial dimensions. This is the case of the standard
L2 product when it reduces to separable functions. The gen-
eralization of the methodologies presented here to the case
in which A(⋅, ⋅) is defined by a general affine decomposition
with n terms (n ≥ 2) is straightforward.

The standard definition of least-squares projection of
some function � ∈ L2(�) into some subset V ⊂ L2(𝛺) is
the element F ∈ V such that

In the case of V being a linear subspace of L2(�) of finite
dimension, the problem of obtaining F results in a linear sys-
tem of algebraic equations (normal equations; the matrix of
the system is the representation of A(⋅, ⋅) in the basis describ-
ing the linear subspace).

If subset V has not the structure of a vectorial space with
a well identified basis, the least-squares definition in (5) still
holds, but obtaining the approximation as a best fit is not as
simple.

In PGD, the proper definition of the approximation space
V is tricky. As it is clear from (1), and its algebraic version
(2), even with a single term (M = 1 , the aforementioned
rank-one approximation) the structure of the approximation
is not linear.

In any case, solving problem (5) is equivalent to find an
stationary point F such that

for all functions F⋆ in a proper test space.
The PGD least-squares algorithm is based on two ideas:

a greedy algorithm combined with an alternating direc-
tions nonlinear solver. The greedy part consists in com-
puting sequentially the terms in the sum for m = 1,… ,M .
The alternating directions iterative solver is applied to

A(F,G) =

n∑
�=1

�
�∏

i=1

a�
i
(fi, gi)

(5)F = argmin
G∈V

A(G −�,G −�)

(6)A(F −𝛷,F⋆) = 0

the nonlinear least-squares problem of finding the best fit
of one-term separable approximation (the best rank-one
approximation).

2.2 Rank‑One Approximation

Let V be the subset of L2(�) containing the functions F that
can be expressed as

for some functions fi ∈ Vi ⊂ L2(𝛺i) , i = 1, 2,… , �
�
 . These

functions are separable with only one-term for the sectional
spaces Vi ⊂ L2(𝛺i) , and are denoted as rank-one approxima-
tions. Even if the sectional spaces Vi are linear, the subset
V of rank-one functions is not a linear subspace of L2(�).

Thus, the problem under consideration reads: for some
given function �(x1, x2,… , x

�
�

) ∈ L2(�) , find F ∈ V
according to the least-squares criterion given in (5).

Note that it is of special interest the particular case when
� is already in separated format, that is, for some M�

The methodology applied to this case is denoted as compres-
sion (and not separation) because the resulting approxima-
tion is expected to have less terms (M ≪ M𝜙).

Thus, the scalar form to be minimized by the solution F
reads

The two terms that depend on the unknown F are

and, for the general case of � non separable,

Whereas for the particular case of separable � , the same
term reads

The proposed methodology to find the rank-one approxi-
mation is based on the alternating directions approach. A
succession of approximations to f� , � = 1, 2,… , �

�
 , is itera-

tively produced, expecting to converge to the actual value
of f� . The iterations are obtained in an alternating direc-
tions fashion, that is in order to compute f� , the previously

(7)F(x1, x2,… , x
�
�

) = f1(x1)f2(x2)… f
�
�

(x
�
�

).

(8)�(x1, x2,… , x
�
�

) =

M�∑
m=1

�m
1
(x1)�

m
2
(x2)…�m

�
�

(x
�
�

).

A(F −�,F −�) = A(F,F) − 2A(F,�) − A(�,�)

(9)A(F,F) =

�
�∏

i=1

ai(fi, fi)

(10)A(F,�) = A

(
�
�∏

i=1

fi,�

)
.

(11)A(F,�) =

M�∑
m=1

�
�∏

i=1

ai(fi,�
m
i
).

computed approximations to the rest of the unknowns fj , for
j ≠ � are assumed to be known and therefore not modified
in the current iteration.

Thus, at the stage of computing component � in the cur-
rent iteration, the unknown reads

where the part in brackets is known and computable, and the
term A(F, F) results

The term A(F,�) reads for the general case described in (10)

where the linear form 𝓁� (⋅) depends on known functions fj
(for j ≠ �) and � . Characterizing 𝓁� (⋅) requires integrating
� along all dimensions but the i-th. In any case, the linear
form 𝓁� (⋅) may be described by its Riesz representation with
respect to a� (⋅, ⋅) , g such that, for all f⋆ ∈ Vi

Remark 4 (Computing the Riesz representation g) The Riesz
representation of 𝓁� (⋅) with respect to a� (⋅, ⋅) , g, is introduced
for convenience in the following developments. In practice,
computing function g ∈ L2(��) (or a discrete approxima-
tion) requires solving the linear problem (14) for all f⋆ .
This is exactly the strategy adopted in [14] to approximate a
multidimensional continuous function, and requires solving
a linear system of equations with the matrix that represents
the sectional bilinear form a� (⋅, ⋅) . In the following, the focus
is made in approximating and operating with discrete objects
expressed in terms of tensors and it is convenient to identify
the right-hand-side of the problems to be solved with func-
tion g (or vector g).

In the particular case of separable � , see (11), the expres-
sion (13) becomes

Therefore, the expression for 𝓁� (⋅) is

F =

[∏
j≠�

fj

]
f� ,

(12)
A(F,F) =

[∏
j≠�

aj(fj, fj)

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=∶�(computable)

a� (f� , f�).

(13)A(F,�) = A

([∏
j≠�

fj

]
f� ,�

)
∶= �� (f�)

(14)�𝛾 (f
⋆) = a𝛾 (g, f

⋆).

(15)
A(F,�) =

M�∑
m=1

[∏
j≠�

aj(fj,�
m
j
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶�m(computable)

a� (f� ,�
m
�
).

and therefore the Riesz representation g of 𝓁� (⋅) , see (14), is
in the case of the separable input � given in (8),

Thus, the funct ional to be minimized reads
J(f�) = � a� (f� , f�) − 2�� (f�) , and the solution f� of this sec-
tional problem is such that for all f⋆ ∈ V𝛾

Problem (18) is linear and sectional, and consists in iden-
tifying the first arguments of the bilinear form, that is it
reduces to

2.3 PGD Greedy Modal Updating

The PGD strategy consists in successively computing
rank-one approximations, aiming at each step to better fit
the unresolved part of the function to be approximated, � .
Thus, once a rank-M approximation F is obtained, see (1)
or its algebraic counterpart (2), the next step is to obtain
�F =

∏�
�

i=1
�fi as the rank-one approximation of � − F .

Then, the updated function F + �F is taken as the rank-M + 1
approximation. This is equivalent to taking f M+1

i
= �fi , for

i = 1,… , �
�
.

The computation of �F as the rank-one approximation
of � − F is performed using the methodology presented in
Sect. 2.2. This strategy of computing each term finding the
optimal at each stage is classifying the PGD approach as a
greedy algorithm. It consists in repeatedly finding rank-one
approximations of the remaining residual.

At this stage, an important point in the algorithm is how
to select a proper stopping criterion to decide the number of
terms that provide a fair enough approximation and how to
implement it. The simplest strategy consists in controlling
the amplitude of each term and to truncate the sum when
the amplitude of the current mode is significantly lower than
the first one.

This requires introducing the normalized version of
each sectional mode, that is replacing fi by f m

i
∕‖f m

i
‖ , for

i = 1,… , �
�
 , m = 1,… ,M , being ‖f m

i
‖ =

√
ai(f

m
i
, f m
i
) . The

norms dividing each sectional mode are accumulated in the
amplitude of each term, �m =

∏�
�

i=1
‖f m

i
‖.

(16)�� (f�) =

M��
m=1

�ma� (f� ,�
m
�
) = a�

⎛
⎜⎜⎝
f� ,

M��
m=1

�m�
m
�

⎞
⎟⎟⎠

(17)g =

M�∑
m=1

�m�
m
�
.

(18)𝛼 a𝛾 (f𝛾 , f
⋆) = �𝛾 (f

⋆) = a𝛾 (g, f
⋆)

(19)f� =
1

�
g.

Thus, the expression for the separated approximation (1)
is rewritten in a normalized version as

This allows deciding when to truncate the PGD expansion
in the basis of the evolution of the amplitudes. For exam-
ple, a common strategy is to keep computing terms while
𝜎m ≥ 𝜂⋆𝜎1 , for some tolerance 𝜂⋆ setting the expected accu-
racy in the PGD truncation: the lower is 𝜂⋆ , the larger the
number of PGD terms, M, is expected.

2.4 Tensorial Version of Least‑Squares PGD

As stated in Sect. 1.1, the functional and tensorial format
for multidimensional data are equivalent once the functional
space is discretized. Thus, the algorithm devised in the pre-
vious section is readily adapted to deal with multidimen-
sional data in tensorial format. In this case, the input data
is a tensor � ∈ ℝ

n1×n2×⋯×n
�� to be approximated by a tensor

F in the same space and expressed in a separable format, as
indicated in Eq. (2).

The sectional bilinear forms ai(⋅, ⋅) , i = 1,… , �
�
 are repre-

sented in the tensorial format by their discrete versions in the
interpolation spaces, that is by matrices Ai ∈ ℝ

ni×ni . Thus,
the application of the bilinear form to functions is identified
by the scalar product of vectors, namely

being f i and f⋆
i
 the vectors in ℝni representing fi and f⋆

i
.

The conceptual steps of the methodology are identical.
In the following, the main points of the procedure devised
in Sects. 2.2 and 2.3 are revisited in their tensorial forms.

Note that the aim of the algorithm is producing a sepa-
rable tensor F fairly approximating � , as in (2). The nor-
malized form, analogous to (20), is preferred to control the
importance of the subsequent terms and also to compare
the successive iterations in the alternating directions loop.
This form reads

where f i , i = 1,… , �
�
 , are unit vectors and the multi-tenso-

rial product is introduced to shorten the notation.
The scalar � introduced in (12) is in the tensorial format

defined as

(20)F(x1, x2,… , x
�
�

) =

M∑
m=1

�m

�
�∏

i=1

f m
i
(xi).

ai(fi, f
⋆
i
) = f�

i
Aif

⋆
i

(21)

F =

M∑
m=1

𝜎mf
m
1
⊗ fm

2
⊗⋯⊗ fm

�
�

=

M∑
m=1

𝜎m

�
�⨂

j=1

fm
j

Let us denote by g ∈ ℝ
n� the discrete representation of the

linear form 𝓁� (⋅) . Equation (13) is rewritten as

where vector g is the discrete representation of the linear
form 𝓁� (⋅) in (13). Recall that in the iteration loop, the
unknown is f � and all the rest (f j for j ≠ �) are considered
to be known. Thus, vector g is the result of contracting all
the indices of tensor � but the �-th one with tensor

⨂
j≠� f j

and using the sectional matrices Aj in each dimension. This
results in computing g such that

this is written in a compact form using symbol ⋮ , that indi-
cates tensor contraction of all possible indices. In this case,
provided that � is a tensor of �

�
 dimensions and

⨂�
�

j≠�
f j is

a tensor of �
�
− 1 dimensions, this means summing up in all

indices ij for j = 1,… , �
�
 with j ≠ � . The expansion in terms

of all the indices of the expression (24) is such that each
component [g]i� , for i� = 1,… , n� of g reads

Then, the solution analogous to (19) is

As noted in (15), in the case � is already available in a
separable format, the expressions are simpler. Indeed, the
separable version of � analogous to (8) reads

And the coefficients �m defined in (15) are defined now by

In this particular situation (for a separable � that has to be
compressed), the computation of f � , analogous to (17) is
straightforwardly given by taking

(22)� ∶=

�
�∏

j≠�

f�
j
Ajf j.

(23)A(F,�) = A

([⨂
j≠𝛾

f j

]
⊗ f 𝛾 ,𝛷

)
= g�A𝛾 f 𝛾 ,

(24)g = � ⋮
⨂
j≠�

[
Ajf j

]

(25)

[g]i� =

n1∑
i1=1

⋯

n�−1∑
i�−1=1

n�+1∑
i�+1=1

⋯

�
�∑

i
��
=1

[�]i1…i�−1i� i�+1…i
��

�
�∏

j≠�

[
Ajf j

]
ij

(26)f � =
1

�
g

(27)� =

M𝜙∑
m=1

�m
1
⊗ �m

2
⊗⋯⊗ �m

�
�

(28)

�m =
∏
j≠�

f�
j
Aj�

m
j
, for m = 1,… ,M�, and for some �

As indicated in Sect. 2.3, in the greedy loop (loop in the
number of PGD terms, m) the function to be approximated
is not � but the remaining residual, that is

In the case of the PGD separation, when � is a general ten-
sor, the computation of g has to be modified and, instead of
(24), one has

For a separated � (PGD compression), taking this into the
account consists in adding more terms to the description of
the function to be approximated. Thus, in the iteration for
f � , (29)g has to be modified to accounting for previously
computed terms, that is

Algorithm 1 describes the full procedure for the case of PGD
compression (applied to a separable �).

Note that Algorithm 1 includes two different tolerances, �
and 𝜂⋆ . These tolerances are used for different purposes. The
value of 𝜂⋆ is used to set the stopping criterion of the greedy
algorithm, that is to decide when to stop the m-loop, as indi-
cated in Sect. 2.3. Instead, � is used as the criterion to stop
the �-iterations (alternating-directions scheme). This assesses
both the difference between to successive amplitudes and the
norm of the difference of the normalized sectional modes.

Remark 5 (Differences with tensor separation, with nonsepa-
rable �) The algorithm for PGD separation is very similar
to Algorithm 1 for PGD compression. The only difference
is to compute g using (30) instead of (31).

Remark 6 (Selecting different least-squares criteria for each
dimension) Most commonly, the sectorial bilinear forms
ai(⋅, ⋅) are taken as standard L2 products in each sectorial
space �i . This translates in the discrete format in taking the
sectional matrices Ai equal to the standard mass matrices
associated with the discretization. Note that, for a 1D sec-
tional space �i =]ai, bi[, this is a simple tridiagonal matrix. In
the case of being � a genuinely algebraic tensor (and not the

(29)g =

M�∑
m=1

�m�
m
�
.

� −

m−1∑
m̃=1

𝜎m̃f
m̃
j
.

(30)

g =

(
� −

m−1∑
m̃=1

𝜎m̃f
m̃
j

)
⋮
⨂
j≠𝛾

[
Ajf j

]

=� ⋮
⨂
j≠𝛾

[
Ajf j

]
−

m−1∑
m̃=1

𝜎m̃

(∏
j≠𝛾

f�
j
Ajf

m̃
j

)
f m̃
𝛾

(31)g =

M𝜙∑
m=1

𝛽m�
m
𝛾
−

m−1∑
m̃=1

𝜎m̃

(∏
j≠𝛾

f�
j
Ajf

m̃
j

)
f m̃
𝛾

discretization of a multidimensional function), the Euclidean
norm is obtained by taking Ai equal to the identity matrix.

In some cases, prior information of the function � to be
approximated may suggest alternative choices for the projec-
tion criteria. Thus, different sectional Gram matrices Ai could
be adopted to preserve some features of the approximation.

3 Operating with Separated
Representations

The methodology presented in Sect. 2.4 and illustrated in
Algorithm 1 provides separable approximations of multi-
dimensional arrays. This is aiming at separating a multidi-
mensional tensor � in general format or compressing (into
a separated expression with less terms) a tensor already
expressed in a separated format.

The current section is devoted to devise strategies to
operate with this type of separable objects. The sum or the
product of two separated tensors are straightforward. Let
us assume that the input data are tensors � and � , both in
ℝ

n1×⋯×n
�� , given by

The sum � + � and the Hadamard product � ⋅ � (compo-
nent by component product, corresponding to the command
“.*” in matlab) result in separated tensors with M� +M�
and M�M� terms, respectively. The different terms in the
resulting expressions, in particular with the product, may
include some redundant information. Therefore, the PGD
compression strategy devised above is to be eventually
applied to reduce the number of terms.

Thus, we select as illustrative examples of nontriv-
ial operations, the division term by term of two tensors
expressed in their separable formats (Hadamard division)
and the solution of linear systems of equations correspond-
ing to parametrized problems.

3.1 Hadamard Division

The Hadamard division is a simple operation between two
multidimensional tensors, � and � as defined in (32). It is
denoted by �⊘ � and consists in a component by compo-
nent division. This operation is performed in matlab by
command “./”.

The operation is extremely simple if the full tensor is
available in its multidimensional format. The aim of this
section is to devise an algorithm to perform this operation
between to tensors expressed in the separable format, with-
out reconstructing the full tensor. Thus, the goal is to obtain
a separable approximation of

in a PGD fashion.
The rationale of the derivation of the algorithm is similar

to the PGD separation and compression described in Sect. 2.
First, it is noted that F is such that

(32)� =

M𝜙∑
m̂=1

�
�⨂

j=1

�m̂
j

and � =

M𝜓∑
m̃=1

�
�⨂

j=1

� m̃
j
.

(33)F = �⊘ �

and a rank-one approximation with the form
F = fm

1
⊗ fm

2
⊗⋯⊗ fm

�
�

 is sought.
The rank-one problem is solved with alternating direc-

tions iterative scheme, that is computing f � , for � = 1,… , �
�
 ,

while assuming that the rest of terms (f j for j ≠ �) are
known. The equation for f � is found multiplying the two
sides of (34) by a test tensor F⋆ =

�⨂
j≠𝛾 f j

�
⊗ f⋆

𝛾
 and

enforcing equation

for any possible value of f⋆
𝛾
 . Equation (35) results in com-

puting f � with the expression

where the coefficients 𝛼m̃ , for m̃ = 1,… ,M𝜓 and 𝛽m̂ , for
m̂ = 1,… ,M𝜙 are given by

Analogously to Sect. 2.4, this rank-one solver is embed-
ded in a greedy loop (for m = 1, 2,…). The idea is that the
approximation with m − 1 terms Fm−1 is available and this is
to be updated by �F such that Fm = Fm−1 + �F . The remain-
ing residual unknown �F is the solution of

And a rank-one approximation of the solution of (37) in the
form �F =

⨂�
�

j=1
�f j is sought. Note that this requires just

modifying the right-hand-side of (34), replacing � by
� − Fm−1 ⊙ � .

Algorithm 2 describes how to obtain the Hadamard divi-
sion of tensors � and � . A first version of this algorithm was
included in [3, 10, 11] as part of a PGD solver for parametric
nonlinear systems of equations.

(34)F⊙ � = �

(35)A(F⊙ � −�,F⋆) = 0

(36)f 𝛾 =

⎡⎢⎢⎣

M𝜙�
m̂=1

𝛽m̂�
m̂
𝛾

⎤⎥⎥⎦
⊘

⎡⎢⎢⎣

M𝜓�
m̃=1

𝛼m̃�
m̃
𝛾

⎤⎥⎥⎦

𝛼m̃ =
∏
j≠𝛾

[(
� m̃

j
⊙ f j

)�

Ajf j

]
, and

𝛽m̂ =
∏
j≠𝛾

[
�m̂�

j
Ajf j

]

(37)𝛿F⊙ � = � − Fm−1 ⊙ �

3.2 Parametric Linear System of Equations

The Hadamard division analyzed in the previous section is
just an example of a complex operation that can be per-
formed with two separable input tensors. As mentioned
above, this is used as key point of PGD for a nonlinear
solver. Another complex operation, extremely useful in the
context of obtaining Computational Vademecums with PGD,
is the solution of algebraic linear systems of equations with
parametric dependence. A particular version of this algo-
rithm is devised in [18] to solve parametric lattice structures
in linear regime.

In a continuous setting (that is in a continuous descrip-
tion of the parametric dependence), the problem reads: find
vector u(�) such that

that is, being the solution of a n × n linear system of alge-
braic equations depending on some parameter �.

It is assumed that input matrix K(�) and input vector b(�)
are expressed in a separable fashion. Thus, the PGD solver
for linear systems of equations is devised to obtain a separa-
ble expression of the parametric dependence of the unknown
u(�) . Obviously, this is to be carried out without reconstruct-
ing the full multidimensional parametric dependence, and
avoiding the curse of dimensionality.

Following the rationale of the previous section, we
present the methodology in a discrete format. Thus, input
matrix K(�) is given as a tensor 𝕂 ∈ ℝ

n×n×n1×⋯×n
��

where (non parametric) matrices Km̂ ∈ ℝ
n×n , for

m̂ = 1,… ,M𝜙 are complemented to a full parametric tensor
dependency by the set of vectors �m̂

j
∈ ℝ

nj , j = 1,… , �
�
 .

Vectors �m̂
j

 are the discrete representations of sectional
modes in the j-th sectional dimension, that is some functions
𝜙m̂
j
(𝜇j).
Similarly, input vector b(�) is given as a tensor

B ∈ ℝ
n×n1×⋯×n

��

(38)K(�)u(�) = b(�)

(39)� =

M𝜙∑
m̂=1

Km̂ ⊗

�
�⨂

j=1

�m̂
j

(40)B =

M𝜓∑
m̃=1

bm̃ ⊗

�
�⨂

j=1

� m̃
j

where (non parametric) vector bm̃ ∈ ℝ
n , for m̃ = 1,… ,M𝜓

are complemented by vectors � m̃
j
∈ ℝ

nj , j = 1,… , �
�
.

Then, the tensorial equation to solve is

and the solution sought in separated format is written as

Note that the product between � and U in (41) must be
understood in the sense that it provides a tensor representa-
tion of the parametric equation (38). This corresponds to the
following definition of � ⋅ U , taking the expressions for �
and U given in (39) and (42):

The product in parametric sectional dimensions is of Had-
amard type because it represents the product of sectional
modes. In other words, �m̂

j
⊙ fm

j
 represents 𝜙m̂

j
(𝜇j) f

m
j
(𝜇j) .

The behavior in the algebraic dimension, is different because
it actually represents the standard matrix-vector product.

The first rank-one approximation, that is taking

that better approximates �−1 ⋅ B is considered in detail to
illustrate Algorithm 3 and its main aspects.

As in the previous example, the rank-one problem is
solved with alternating directions iterative scheme. In this
case, we have two types of iterations.

3.2.1 Parametric Rank‑One Iterations

First, the standard parametric sectional problem consists in
computing f � in (44), for � = 1,… , �

�
 , while assuming that

the rest of terms (u and f j for j ≠ �) are known. The equa-
tion for f � is found multiplying the two sides of (41) by a
test tensor U⋆ = u⊗

�⨂
j≠𝛾 f j

�
⊗ f⋆

𝛾
 and enforcing

equation

(41)� ⋅ U = B

(42)U =

M∑
m=1

um ⊗

�
�⨂

j=1

fm
j
.

(43)� ⋅ U =

M∑
m=1

M𝜙∑
m̂=1

[
Km̂

⋅ um
]
⊗

�
�⨂

j=1

[
�m̂
j
⊙ fm

j

]
.

(44)U ≈ u⊗

�
�⨂

j=1

f j

(45)A(� ⋅ U − B,U⋆) = 0

for all possible f⋆
𝛾
.

Note that for the rank-one solution in (44)

therefore

where A0 stands for the matrix describing the space sec-
tional dimension of A(⋅, ⋅) (corresponding to u). Similarly

Thus, the solution f � fulfilling (45) for every f⋆
𝛾
 is

3.2.2 Space Rank‑One Iteration

The iteration for the space sectional dimension (the nonpara-
metric sectional dimension) consists in computing u in (44),
while assuming that the rest of terms (f j for j = 1,… , �

�
)

(46)� ⋅ U =

M𝜙∑
m̂=1

[
Km̂

⋅ u
]
⊗

�
�⨂

j=1

[
�m̂
j
⊙ f j

]

(47)

A(� ⋅ U,U⋆)

=

M𝜙∑
m̂=1

[
u�Km̂�A0u

]∏
j≠𝛾

[(
�m̂
j
⊙ f j

)�

Ajf j

]

���
𝛼m̂

…

[(
�m̂
𝛾
⊙ f 𝛾

)�

A𝛾 f
⋆
𝛾

]

(48)

A(B,U⋆) =

M𝜓∑
m̃=1

[
bm̃�A0u

]∏
j≠𝛾

[
� m̃�

j
Ajf j

]

�����������������������������������
𝛽m̃

…
[
� m̃�

𝛾
A𝛾 f

⋆
𝛾

]

(49)
f 𝛾 =

⎡
⎢⎢⎣

M𝜓�
m̃=1

𝛽m̃�
m̃
𝛾

⎤
⎥⎥⎦

�����������
=∶g

⊘

⎡
⎢⎢⎣

M𝜙�
m̂=1

𝛼m̂�
m̂
𝛾

⎤
⎥⎥⎦
.

are known. In this case the test tensor U⋆ = u⋆ ⊗
�⨂�

�

j=1
f j

�

is used to enforce Eq. (45), namely,

and

Thus, u fulfilling (45) for every u⋆ is the solution of the fol-
lowing n × n linear system of algebraic equations

3.2.3 Modal Updating

The computation of the sectional iterations proposed in Eqs.
(49) and (52) stand for the first term of the PGD expansion
in (42) (for M = 1). For the subsequent terms (M > 1), one
has to account for the terms already computed. In practice,
this requires to replace B in (40) by

This is equivalent to properly modify the numerator in the
right-hand-side of (49) and the right-hand-side vector of the
linear system (52), both denoted by g . The resulting opera-
tions are indicated in Algorithm 3.

(50)

A(� ⋅ U,U⋆)

=

M𝜙∑
m̂=1

[
u�Km̂�A0u

⋆
] �

�∏
j=1

[(
�m̂
j
⊙ f j

)�

Ajf j

]

�����������������������������
𝛼m̂

(51)
A(B,U⋆) =

M𝜓∑
m̃=1

[
bm̃�A0u

⋆
] �

�∏
j=1

[
� m̃�

j
Ajf j

]

���������������
𝛽m̃

.

(52)
⎡⎢⎢⎣

M𝜙�
m̂=1

𝛼m̂K
m̂

⎤⎥⎥⎦
u =

M𝜓�
m̃=1

𝛽m̃b
m̃ =∶ g

(53)B =

M𝜓∑
m̃=1

bm̃ ⊗

�
�⨂

j=1

� m̃
j
−

M−1∑
m=1

um ⊗

�
�⨂

j=1

fm
j
.

4 Numerical Illustrations

All the examples described in this section are produced with
the matlab open-source routines hosted in GitHub, https
://git.lacan .upc.edu/zlotn ik/algeb raicP GDtoo ls. The pack-
age includes a tutorial with examples to ease the use of the
routines.

4.1 PGD Separation of the Butterfly Curve Family

The function with six arguments given by

is defining a five-dimensional set of curves expressed as a
polar representation of the function, r(�) = �(�, a, b, c, d, e) ,
each curve corresponding to a given value of the five
parameters (a, b, c, d, e). Due to their shape, this family
is denoted as the butterfly curve, see [9]. The ranges of the
arguments of � are taken to be � ∈ [0, 2�] , a ∈ [−1, 1] ,
b ∈ [−3, 3] , c ∈ [0, 4] , d ∈ [0, 5] and e ∈ [1, 12] . Multidi-
mensional function � is discretized in to a six-dimensional
tensor � ∈ ℝ

n�×na×nb×nc×nd×ne , obtained by uniform sampling
along each of the six sectional dimensions, being n� = 100 ,
na = 20 , nb = 20 , nc = 20 , nd = 6 , and ne = 20 the number
of sampling point in each dimension. This tensorial object
is selected as a benchmark for high-order tensor separation
because it allows a graphic representation (the butterfly

(54)
�(�, a, b, c, d, e) = a exp(cos �) − b cos(c �) + sind(�∕e),

Fig. 1 PGD separation of the butterfly curve. Convergence of the rel-
ative error in Frobenius norm, with the number of terms of the sepa-
rated approximation

https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
https://git.lacan.upc.edu/zlotnik/algebraicPGDtools

curves) of both the original tensor and its separated approxi-
mations, see [14]. Function � defined in (54) inducing the
butterfly curve does not accept an exact separated represen-
tation as described in (1).

Note that the six-dimensional tensor � has a number of
n� × na × nb × nc × nd × ne entries (in this case it amounts
to 96 millions) and the storage of the full tensor requires
∼ 732 MB of memory. The PGD separation as described
in Algorithm 1 and available from the GitHub account is
used to obtain a separable expression of tensor � up to 800
terms, namely

(55)� ≈ FM =

M∑
m=1

fm
𝜃
⊗ fm

a
⊗ fm

b
⊗ fm

c
⊗ fm

d
⊗ fm

e
,

being M the number of PGD terms that in this case goes
up to 800. This allows easily computing the evolution of
the error norm with the number of terms in the separation
(55), that is along the greedy algorithm, namely ‖� − FM‖
for M = 1, 2,… . Here, ‖ ⋅ ‖ stands for the Frobenius norm.
Figure 1 depicts the evolution of the relative error with the
number of terms, M. Note that the error associated with
the more accurate approximation (M = 800) is 3.5 × 10−4
and that instead of the ∼732 Mb of storage memory of
the full tensor, the separated version with 800 terms has
800 × (n� + na + nb + nc + nd + ne) = 148,800 entries that
amount to ∼1.1 MB. That is, accepting an error of less than
0.1% allows a compression factor reducing 700 times the
storage memory.

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

exact
5 modes
15 modes
90 modes

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

exact
5 modes
15 modes
90 modes

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0

exact
5 modes
15 modes
90 modes

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

exact
5 modes
15 modes
90 modes

a=-0.5556; b=-3: c=1.3333; d=1; e=3.4444 a=1; b=1: c=4; d=5; e=12

a=-0.5556; b=1: c=4; d=1; e=12 a=0.1111; b=-2.3333: c=4; d=1; e=12

Fig. 2 PGD separation of the butterfly curve. Illustration of the approximation for four different sets of parameters. In each case three PGD solu-
tions (corresponding to 5, 15 and 90 modes) are compared with the exact butterfly curve

In Fig. 2 four different instances of the Butterfly curve
are displayed for six values of the parameters in the discre-
tized range. In each of the four cases, the full order tensor is
associated with the exact curve, in black, and three approxi-
mations corresponding to using 5, 15 and 90 PGD terms (in
pink, blue and green, respectively). Note that, according to
the graph in Fig. 1, 90 terms provide a solution with an error
lower than 1%. Therefore, solutions with numbers of modes
larger than 90 are indistinguishable from the exact solution
to the naked eye.

4.2 PGD Division, Compression and Separation

The PGD Hadamard division (Algorithm 2) is presented
next by using a synthetic example. Two three-dimensional
tensors D and E are built based on the following functions,

being f m
x
(x) = sin(�xm) , f m

y
(y) = ym and f m

z
(z) = mz and

gm
x
(x) = cos(�xm) + 1 , gm

y
(y) = y1∕m + 1 , gm

z
(z) = z + m.

The corresponding separated tensors E and D are
obtained by evaluating previous functions f m

i
 and gm

i
 , for

i = x, y, z and m = 1, 2, 3 . Each spatial direction lies in the
[0, 1] range, that is (x, y, z) ∈ [0, 1]3 , and are discretized with
70, 130 and 190 uniformly spaced points (respectively to
x, y, and z). The Hadamard division algorithm devised in
Sect. 3.1 produces a separated tensor P ≈ E⊘ D , without
reconstructing the full tensor versions of E and D . Note that
each full tensor requires storing 70 × 130 × 190 = 1,729,000
entries, wether their separated versions are expressed with
only 3 × (70 + 130 + 190) = 1 170 entries. In this toy exam-
ple, the direct Hadamard division of the full tensors is per-
formed to obtain a reference value Rfull = E⊘ D . Thus, the
error is measured as ‖P − Rfull‖∞∕‖Rfull‖∞.

The same example is used to test the PGD compression.
Once P is computed, it can be readily compressed into
Pcomp using Algorithm 1. Also the reference solution Rfull is
expressed in separable format with the separation strategy
devised in Sect. 2, this is denoted by Rcomp and one would
expect that it performs similarly to Pcomp.

Figure 3 shows the evolution of the modal amplitude (left
panel) and the convergence of the error with the number
of modes (right panel) for P , Pcomp and Rcomp . In the error
convergence curves, the error is computed in all cases with
respect to Rfull . In this example 84 terms for P suffice to
obtain a separable representation with relative error in infi-
nite norm of 10−7 . As expected, the solutions Pcomp and Rcomp
that result from compressing P and Rfull behave similarly,
both in the evolution of the amplitude of their terms and in
the evolution of the relative error.

4.3 PGD Linear System Solver

The PGD linear system solver is used next to solve a higher-
dimensional linear system arising from the parameterization
of an advection-diffusion problem,

E(x, y, z) =

3∑
m=1

f m
x
(x) f m

y
(y) f m

z
(z), and

D(x, y, z) =

3∑
m=1

gm
x
(x) gm

y
(y) gm

z
(z)

Fig. 3 Top panel: evolution of amplitude � with the number of terms
of: (i) the pgd-Hadamard-division P (solid line), (ii) its compressed
version Pcomp (dashed line), and (iii) direct separation of Rfull , the
reference solution (dividing full tensors) (doted line). Bottom panel:
convergence of the relative error in infinite norm with the number of
terms in the solution for (i), (ii) and (iii) with respect to Rfull

Fig. 4 Potential flow velocity
map distributions: a vp1 for the
upper branch, and b vp2 for the
lower branch. c Domain for the
convection diffusion problem

Fig. 5 Concentration distribution uPGD of the stationary convection diffusion system, using the PGD linear system solver, with predominant flow
in a upper branch, b lower branch and c both branches opened. d Relative error PGD versus finite element convergence

where � is the diffusivity, and v(x) is a vector field describ-
ing the advection velocity. The velocity v(x) is taken to be
parametric, as a linear combination of two fields v1(x) and
v2(x) , shown in Fig. 4a, b. Thus, parameters � and � are
introduced such that

being the ranges of variation of the parameters such that
� ∈ [50, 1000] and � ∈ [50, 1000].

The discrete version of the problem before enforcing the
essential boundary conditions (those on �D) reads,

where K� is the stiffness matrix corresponding to the second
order operator, Cv1

 and Cv2
 the convection matrices corre-

sponding to the velocity fields v1 and v2 respectively, and f
the vector accounting for the Neumann boundary conditions
(which in this case are independent of the parameters). As
indicated in Fig. 4c, the Neumann boundary conditions are
homogeneous everywhere on �N , except in the zone of the
narrowing, where uN ≠ 0 enforces a flux that accounts for
an injection of the mass (or heat) that increases locally the
concentration (or temperature). Note that the discrete form
(58) is straightforwardly expressed in an affine decomposi-
tion, namely

with K1 = K� , g1(�) = h1(�) = 1 ; K2 = Cv1
 , g2(�) = � ,

h2(�) = 1 ; K3 = Cv2
 , g3(�) = 1 , h3(�) = �.

The essential (or Dirichlet) boundary conditions are
implemented by suppressing the equations corresponding to
the prescribed degrees of freedom and bringing to the right-
hand-side the corresponding columns of K(�, �) multiplied
by the prescribed value of the concentration u.

In practice (58) results in the following reduced version

where the matrices and vectors with the subscript ⋆ do not
include the prescribed degrees of freedom, vectors f⋆

𝜈
 , f⋆

v1

and f⋆
v2

 are the linear combination of the columns of matri-
ces K� , Cv1

 and Cv2
 weighted with the prescribed values of

the concentration u.
The parametric dimensions are discretized with 100

equally spaced points each. Thus, functions gm and hm ,

(56)

⎧
⎪⎨⎪⎩

−∇ ⋅ (�∇u) + v ⋅ ∇u = 0 in �

u = uD on �D

n ⋅ �∇u = uN(x) on �� ⧵ �D = �N

(57)v(x, �, �) = � v1(x) + � v2(x),

(58)
(
K� + �Cv1

+ �Cv2

)
u = f ,

(59)K(�, �) =

3∑
m=1

Km gm(�) hm(�)

(60)
(
K⋆

𝜈
+ 𝛼 C⋆

v1
+ 𝛽 C⋆

v2

)
u⋆ = f⋆ − f⋆

𝜈
− 𝛼 f⋆

v1
− 𝛽 f⋆

v2
,

m = 1, 2, 3 are described by vectors of 100 components and
system (60) is readily written in the format of (41). Then,
the input for Algorithm 3 is ready and the solution provided
is seen as a Vademecum (explicit parametric solution), con-
taining is a separated format the concentration fields for all
possible values of the parameters � and �.

Figure 5a–c show, in the form of a concentration map
(distribution of u(x)) the PGD solution at some specific val-
ues of � and � . Figure 5a illustrates a solution in which the
advection is dominated by v1 , Fig. 5b with advection domi-
nated by v2 and Fig. 5c with an intermediate situation.

The evolution of the error (with respect to the full Finite
Element solution for all possible values of the parameters
in the discretized 100 × 100 grid) measured in an Euclidean
norm (or L2 norm) for the four-dimensional space (two space
dimensions plus two parametric dimensions) is displayed in
Fig. 5d. It is worth noting that with less than 100 PGD terms
the error is reduced to 0.5%.

5 Closure

The PGD Least-Squares strategy to produce a separated
approximation of a multidimensional tensor is devised as
the discrete form of approximating a multivariate function.
This philosophy is generalized to operate with separated
objects, performing complex operations (division, matrix
inversion...) in the separated format, that is without generat-
ing the full multidimensional tensor and therefore precluding
the curse of dimensionality.

A set of matlab routines implementing the Encapsu-
lated PGD toolbox, that is the strategies described in the
paper, is openly released at https ://git.lacan .upc.edu/zlotn
ik/algeb raicP GDtoo ls.

The toolbox character of these algorithms is strengthen
by the definition of a class of objects corresponding to sepa-
rated tensors, and the corresponding elementary operations.

The application of this strategy to several illustrative test
cases shows the efficiency and implementation convenience
of using the toolbox.

Acknowledgements This work is partially funded by Generalitat
de Catalunya (Grant No. 1278 SGR 2017-2019) and Ministerio de
Economía y Empresa and Ministerio de Ciencia, Innovación y Uni-
versidades (Grant No. DPI2017-85139-C2-2-R).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
https://git.lacan.upc.edu/zlotnik/algebraicPGDtools

References

1. Beylkin G, Mohlenkamp MJ (2002) Numerical operator calculus
in higher dimensions. Proc Nal Acad Sci 99(16):10246–10251

2. Beylkin G, Mohlenkamp MJ (2005) Algorithms for numeri-
cal analysis in high dimensions. SIAM J Sci Comput
26(6):2133–2159

3. Borzacchiello D, Chinesta F, Malik M, García-Blanco R, Díez
P (2016) Unified formulation of a family of iterative solvers for
power systems analysis. Electr Power Syst Res 140:201–208. https
://doi.org/10.1016/j.epsr.2016.06.021

4. Chinesta F, Keunings R, Leygue A (2014) The proper generalized
decomposition for advanced numerical simulations. A primer.
Springer briefs in applied sciences and technology. Springer,
Cham. https ://doi.org/10.1007/978-3-319-02865 -1

5. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, González
D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computa-
tional vademecum for efficient design, optimization and control.
Arch Comput Methods Eng 20:31–59. https ://doi.org/10.1007/
s1183 1-013-9080-x

6. Díez P, Zlotnik S, García-González A, Huerta A (2018) Alge-
braic PGD for tensor separation and compression: an algorith-
mic approach. C R Mécanique 346(7):501–5014. https ://doi.
org/10.1016/j.crme.2018.04.011

7. Doostan A, Iaccarino G (2009) A least-squares approximation
of partial differential equations with high-dimensional random
inputs. J Comput Phys 228(12):4332–4345

8. Espig M, Hackbusch W, Litvinenko A, Matthies HG, Zander
E (2012) Efficient analysis of high dimensional data in tensor
formats. In: Garcke J, Griebel M (eds) Sparse grids and appli-
cations, vol 88. Lecture notes in computational science and
engineering. Springer, Berlin, Heidelberg, pp 31–56. https ://doi.
org/10.1007/978-3-642-31703 -3_2

9. Fay TH (1989) The butterfly curve. Am Math Mon 96:442–443
 10. García-Blanco R, Borzacchiello D, Chinesta F, Díez P (2017)

Monitoring a PGD solver for parametric power flow problems
with goal-oriented error assessment. Int J Numer Methods Eng
111:529–552. https ://doi.org/10.1002/nme.5470

 11. García-Blanco R, Díez P, Borzacchiello D, Chinesta F (2017)
Algebraic and parametric solvers for the power flow problem:
towards real-time and accuracy-guaranteed simulation of electric
systems. Arch Comput Methods Eng. https ://doi.org/10.1007/
s1183 1-017-9223-6

 12. Grasedyck L, Kressner D, Tobler C (2013) A literature survey of
low-rank tensor approximation techniques. GAMM-Mitteilungen
36(1):53–78

 13. Kolda T, Bader B (2009) Tensor decompositions and applications.
SIAM Rev 51:455–500

 14. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized
decomposition for parameterized Helmholtz problems in hetero-
geneous and unbounded domains: application to harbor agita-
tion. Comput Methods Appl Mech Eng 295:127–149. https ://doi.
org/10.1016/j.cma.2015.03.026

 15. Nouy A (2017) Low-rank tensor methods for model order
reduction. In: Ghanem R, Higdon D, Owhadi H (eds) Hand-
book of uncertainty quantification. Springer, Cham. https ://doi.
org/10.1007/978-3-319-12385 -1_21

 16. Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci
Comput 33(5):2295–2317

 17. Rozza G (2014) Fundamentals of reduced basis method for
problems governed by parametrized PDEs and applications. In:
Chinesta F, Ladevèze P (eds) Separated representations and pgd-
based model reduction. CISM international centre for mechani-
cal sciences, vol 554. Springer, Vienna, pp 153–227. https ://doi.
org/10.1007/978-3-7091-1794-1_4

 18. Sibileau A, García-González A, Auricchio F, Morganti S, Díez
P (2018) Explicit parametric solutions of lattice structures with
proper generalized decomposition (PGD): applications to the
design of 3D-printed architectured materials. Comput Mech
62(4):871–891. https ://doi.org/10.1007/s0046 6-017-1534-9

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.epsr.2016.06.021
https://doi.org/10.1016/j.epsr.2016.06.021
https://doi.org/10.1007/978-3-319-02865-1
https://doi.org/10.1007/s11831-013-9080-x
https://doi.org/10.1007/s11831-013-9080-x
https://doi.org/10.1016/j.crme.2018.04.011
https://doi.org/10.1016/j.crme.2018.04.011
https://doi.org/10.1007/978-3-642-31703-3_2
https://doi.org/10.1007/978-3-642-31703-3_2
https://doi.org/10.1002/nme.5470
https://doi.org/10.1007/s11831-017-9223-6
https://doi.org/10.1007/s11831-017-9223-6
https://doi.org/10.1016/j.cma.2015.03.026
https://doi.org/10.1016/j.cma.2015.03.026
https://doi.org/10.1007/978-3-319-12385-1_21
https://doi.org/10.1007/978-3-319-12385-1_21
https://doi.org/10.1007/978-3-7091-1794-1_4
https://doi.org/10.1007/978-3-7091-1794-1_4
https://doi.org/10.1007/s00466-017-1534-9

	Encapsulated PGD Algebraic Toolbox Operating with High-Dimensional Data
	Abstract
	1 Introduction
	1.1 Background and Notation
	1.2 Layout of the Paper

	2 Least-Squares PGD Separation and Compression
	2.1 Problem Statement in the Functional Framework
	2.2 Rank-One Approximation
	2.3 PGD Greedy Modal Updating
	2.4 Tensorial Version of Least-Squares PGD

	3 Operating with Separated Representations
	3.1 Hadamard Division
	3.2 Parametric Linear System of Equations
	3.2.1 Parametric Rank-One Iterations
	3.2.2 Space Rank-One Iteration
	3.2.3 Modal Updating

	4 Numerical Illustrations
	4.1 PGD Separation of the Butterfly Curve Family
	4.2 PGD Division, Compression and Separation
	4.3 PGD Linear System Solver

	5 Closure
	Acknowledgements
	References

