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Abstract
In its original conception, proper generalized decomposition (PGD) provides explicit parametric solutions, denoted as com-
putational vademecums or digital abacuses, to parametric boundary value problems. The PGD approach is extended 
here to devise a set of algebraic tools enabling to operate with multidimensional tensor data. These tools are designed to 
store, compress and perform basic operations (in particular divisions) with tensors in separable format. These tools are 
directly producing the computational vademecums for the resulting high-dimensional tensor data. Thus, the 
general methodology enables performing nontrivial operations (storage, compression, division, solving linear 
systems of equations...) for multi-dimensional tensor data. The idea is based on the principle of the PGD separation, that 
produces a separable least squares approximation of any multidimensional function. The PGD compression is a 
particular case, extensively used in practice to compact the separable solution without loss of accuracy. Here, this 
concept is applied to algebraic tensor structures that are also seen as functions in multidimensional Cartesian 
domains. Moreover, a straightforward extension of this concept is devised to operate with multidimensional objects 
stored in the separable format. That allows creating a toolbox of PGD arithmetic operators that is publicly released at 
https ://git.lacan .upc.edu/zlotn ik/algeb raicP GDtoo ls. Numerical tests dem-onstrate the performance and efficiency of the 
toolbox, both for tensor data handling and operation and also in applications pertaining to the discretized version of 
boundary value problems.

1 Introduction

Algebraic separation of multidimensional tensors has exten-
sive applications in methods dealing with multidimensional 
data, and is therefore object of intensive research efforts [12, 
13, 16]. Tensor separation is a very efficient strategy for 
data compression and opens the door to operate in higher 
dimensions following incremental-iterative approaches [1, 
2]. These operations with high-dimensional tensors are a key 
ingredient in the solution of parametric problems in compu-
tational mechanics, in particular for stochastic models [7, 8].

Proper generalized decomposition (PGD) [4, 5] produces 
separated representations of multidimensional functions. In 
the discrete format, this is equivalent to obtain separated 

format of multidimensional tensor data. The initial idea is 
to obtain a separated representation of the (unknown) solu-
tion of some boundary-value problem. Here, the same idea 
is exploited to obtain separable approximations of multidi-
mensional objects that result of operating with other multi-
dimensional objects, in particular when the original objects 
are already expressed with a separable representation, as 
already analyzed in [15].

The aim of this paper is to introduce a general method-
ology to operate with separable representation of multidi-
mensional data. First, it is natural to recall and provide an 
algorithmic description of the PGD least squares projection 
in a functional framework, see [6]. These functions are read-
ily represented by tensorial discretizations (a function with 
one argument is discretized as a vector, with two arguments 
in a cartesian domain as a matrix, with three as a tensor of 
order three...).

1.1  Background and Notation

The multidimensional data is represented by a real-valued 
function F taking values in 𝛺 ⊂ ℝ

�
� . The domain � is 
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assumed to be Cartesian, that is � is the Cartesian product 
�
�
 simple sectional domains �i , for i = 1, 2,… , �

�
 . Typi-

cally, the sectional domains are real intervals, �i =]ai, bi[ , 
with ai < bi , where the variable xi ranges (the term sectional 
refers to one individual coordinate or dimension).

Definition 1 The function F is said to be separable if for 
some integer value M, there exists a set of functions f m

i
 tak-

ing values in �i , for i = 1, 2,… , �
�
 and m = 1, 2,… ,M , such 

that

Note that this is the form adopted by the PGD solutions.

Remark 1 (Dealing with vector coordinates) For the sake of 
a simpler presentation, each coordinate xi for i = 1, 2,… , �

�
 

is taken as ranging in a 1D domain ]ai, bi[ . In the general 
case the coordinates belong to arbitrary domains 𝛺i ⊂ ℝ

di 
with integer dimensions di ≥ 1 . A particularly interesting 
case is taking the first coordinate x1 as describing the physi-
cal domain (thus, typically in ℝ2 or ℝ3 ) and the rest as scalar 
parameters. In the remainder, for the sake of a clearer pres-
entation and with no loss of generality, it is assumed that all 
the coordinates are scalar magnitudes.

The �
�
-dimensional domain � is discretized with 

a Cartesian mesh resulting of discretizing each of the 
sectional domains �i with ni nodes denoted by xk

i
 , for 

k = 1, 2,… , ni . In the particular case of selecting a uniform 
grid in 1D sectional domains �i =]ai, bi[ , these nodes read 
xk
i
= ai + (bi − ai)(k − 1)∕(ni − 1) for i = 1, 2,… , �

�
 and 

k = 1, 2,… , ni . Note however that the proposed methodol-
ogy is not restricted to uniformly distributed nodes. Then, 
multidimensional function F is readily represented by the 
tensor of its nodal values F ∈ ℝ

n1×n2×⋯×n
�� , such that

The separability of F (the discrete representation of F) is 
defined as follows.

Definition 2 Tensor F ∈ ℝ
n1×⋯×n

�� is said to be separa-
ble if for some integer value M, there exist a set of vectors 
fm
i
∈ ℝ

ni for i = 1, 2,… , �
�
 and m = 1, 2,… ,M such that

Note that Definitions 1 and 2 are equivalent in the sense 
that vectors f

i
m are seen as containing the nodal values of f

i
m 

in the grid of points x
i
k for i = 1, 2, … , �

�
 , m = 1, 2, … , 

M

(1)F(x1, x2,… , x
�
�

) =

M∑
m=1

f m
1
(x1)f

m
2
(x2)⋯ f m

�
�

(x
�
�

).

[F]k1k2…k
��

= F(x
k1
1
, x

k2
2
,… , x

k
��

�
�

)

(2)F =

M∑
m=1

fm
1
⊗ fm

2
⊗⋯⊗ fm

�
�

and k = 1, 2,… , ni , that is [fm
i
]k = f m

i
(xk

i
) . The aim of this 

paper is to present numerical strategies to produce and oper-
ate with separable objects, mainly in their tensorial format. 
The functional format is here equivalent to the tensorial for-
mat. It is used in the presentation because the basis of the 
PGD is formulated in a functional setting as a method to 
solve parametric PDEs.

1.2  Layout of the Paper

First, in Sect. 2, the PGD compression based on the least-
squares higher-order projection introduced in [14] and algo-
rithmically detailed in [6] is reviewed and presented both in 
the functional and tensorial setup, including here the new 
feature of using nontrivial least-squares norms, that is the 
possibility of having different projection criteria (different 
norms in the least-squares fitting) for each dimension. This 
is discussed in Sect. 2.3. A synthetic algorithm is also pre-
sented in Sect. 2.2, which is accompanied by a downloadable 
matlab implementation.

The PGD compression is generalized in Sect. 3 to define 
operations between separable approximations. The sum and 
product are considered as the straightforward operations. 
Note that operators are a priori very simple. However, in prac-
tice, they require a compression to be effective. Section 3.1 
describes how to perform a nontrivial operation between two 
tensors in separable format, the Hadamard division. Also here, 
a synthetic algorithm is presented to illustrate the implementa-
tion available in the open source repository. Section 3.2 pre-
sents the strategy to solve linear systems of equations arising 
from the parametric version of a discretized boundary value 
problem (using the preferred method, viz. finite elements, finite 
differences, boundary elements...). In practice, it requires two 
input tensors (one representing the parametric matrix, one rep-
resenting the parametric vector). All the parametric sectional 
dimensions have to be of the same type in both tensors. The 
first dimension (the so-called space dimension) has to be com-
patible: a square matrix for the left-hand-side term and a vector 
of the same length for the right-hand-side.

Section 4 presents a set of examples illustrating the capa-
bilities of the presented algorithms for all the operations 
analyzed.

2  Least‑Squares PGD Separation 
and Compression

2.1  Problem Statement in the Functional 
Framework

A bilinear form A(⋅, ⋅) taking values in L2(�) × L2(�) is 
expressed in terms of how it affects rank-one separable 



functions, that is functions that can be expressed in the 
form of (1) with M = 1 . Namely, for two rank-one func-
tions like F(x1, x2,… , x

�
�

) = f1(x1)f2(x2)… f
�
�

(x
�
�

) and 
G(x1, x2,… , x

�
�

) = g1(x1)g2(x2)… g
�
�

(x
�
�

) , the form reads

where the sectional symmetric and positive definite 
bilinear forms ai(⋅, ⋅) take values in L2(�i) × L2(�i) for 
i = 1, 2,… , �

�
.

The definition of A(⋅, ⋅) for general separable functions of 
arbitrary ranks (not only for rank one, as in (3), is introduced 
as follows. Let F and G be such that

it is assumed that

This definition is such that A(⋅, ⋅) inherits the bilinear sym-
metric and positive definiteness properties of the sectional 
forms ai(⋅, ⋅) , i = 1,… , �

�
.

Remark 2 (Bilinear nature of form A(⋅, ⋅) ) Note that the form 
A(⋅, ⋅) defined from (3), (4) and the set of bilinear sectional 
forms ai(⋅, ⋅) is itself bilinear, symmetric and positive defi-
nite. The symmetry and the homogeneity for scalars, that is

are obvious from (4) and the symmetry of the sectional 
forms. The linearity of each argument is readily shown by 
considering a function

and observing that

(3)A(F,G) =

�
�∏

i=1

ai(fi, gi)

F(x1, x2,… , x
�
�

) =

M∑
m=1

f m
1
(x1)f

m
2
(x2)… f m

�
�

(x
�
�

) ,

G(x1, x2,… , x
�
�

) =

M̂∑
m̂=1

gm̂
1
(x1)g

m̂
2
(x2)… gm̂

�
�

(x
�
�

)

(4)A(F,G) =

M∑
m=1

M̂∑
m̂=1

�
�∏

i=1

ai(f
m
i
, gm̂

i
)

A(F,G) = A(G,F) and A(�F,G) = �A(F,G)

F̃(x1, x2,… , x
�
�

) =

M̃∑
m̃=1

f̃ m̃
1
(x1)f̃

m̃
2
(x2)… f̃ m̃

�
�

(x
�
�

)

A(F + F̃,G) =

M∑
m=1

M̂∑
m̂=1

�
�∏

i=1

ai(f
m
i
, gm̂

i
)

+

M̃∑
m̃=1

M̂∑
m̂=1

�
�∏

i=1

ai(f̃
m̃
i
, gm̂

i
)

=A(F,G) + A(F̃,G)

The positive definiteness results from the positive definite-
ness of the sectional forms.

Remark 3 (Description of bilinear form A(⋅, ⋅) with only one 
separated term) The form A(⋅, ⋅) is defined in Eq. (3) with 
only one product, and not with a sum of these terms as in, 
for instance, [17]. In a more general setup, the operator is 
often characterized by an affine decomposition with n terms, 
that is

The form adopted in Eq. (3), has only one term because 
it is sufficient to properly represent a standard norm in 
L2(�) × L2(�) by introducing the sectional norm in each 
of the tensorial dimensions. This is the case of the standard 
L2 product when it reduces to separable functions. The gen-
eralization of the methodologies presented here to the case 
in which A(⋅, ⋅) is defined by a general affine decomposition 
with n terms ( n ≥ 2 ) is straightforward.

The standard definition of least-squares projection of 
some function � ∈ L2(�) into some subset V ⊂ L2(𝛺) is 
the element F ∈ V  such that

In the case of V being a linear subspace of L2(�) of finite 
dimension, the problem of obtaining F results in a linear sys-
tem of algebraic equations (normal equations; the matrix of 
the system is the representation of A(⋅, ⋅) in the basis describ-
ing the linear subspace).

If subset V has not the structure of a vectorial space with 
a well identified basis, the least-squares definition in (5) still 
holds, but obtaining the approximation as a best fit is not as 
simple.

In PGD, the proper definition of the approximation space 
V is tricky. As it is clear from (1), and its algebraic version 
(2), even with a single term ( M = 1 , the aforementioned 
rank-one approximation) the structure of the approximation 
is not linear.

In any case, solving problem (5) is equivalent to find an 
stationary point F such that

for all functions F⋆ in a proper test space.
The PGD least-squares algorithm is based on two ideas: 

a greedy algorithm combined with an alternating direc-
tions nonlinear solver. The greedy part consists in com-
puting sequentially the terms in the sum for m = 1,… ,M . 
The alternating directions iterative solver is applied to 

A(F,G) =

n∑
�=1

�
�∏

i=1

a�
i
(fi, gi)

(5)F = argmin
G∈V

A(G −�,G −�)

(6)A(F −𝛷,F⋆) = 0



the nonlinear least-squares problem of finding the best fit 
of one-term separable approximation (the best rank-one 
approximation).

2.2  Rank‑One Approximation

Let V be the subset of L2(�) containing the functions F that 
can be expressed as

for some functions fi ∈ Vi ⊂ L2(𝛺i) , i = 1, 2,… , �
�
 . These 

functions are separable with only one-term for the sectional 
spaces Vi ⊂ L2(𝛺i) , and are denoted as rank-one approxima-
tions. Even if the sectional spaces Vi are linear, the subset 
V of rank-one functions is not a linear subspace of L2(�).

Thus, the problem under consideration reads: for some 
given function �(x1, x2,… , x

�
�

) ∈ L2(�) , find F ∈ V  
according to the least-squares criterion given in (5).

Note that it is of special interest the particular case when 
� is already in separated format, that is, for some M�

The methodology applied to this case is denoted as compres-
sion (and not separation) because the resulting approxima-
tion is expected to have less terms ( M ≪ M𝜙).

Thus, the scalar form to be minimized by the solution F 
reads

The two terms that depend on the unknown F are

and, for the general case of � non separable,

Whereas for the particular case of separable � , the same 
term reads

The proposed methodology to find the rank-one approxi-
mation is based on the alternating directions approach. A 
succession of approximations to f� , � = 1, 2,… , �

�
 , is itera-

tively produced, expecting to converge to the actual value 
of f� . The iterations are obtained in an alternating direc-
tions fashion, that is in order to compute f� , the previously 

(7)F(x1, x2,… , x
�
�

) = f1(x1)f2(x2)… f
�
�

(x
�
�

).

(8)�(x1, x2,… , x
�
�

) =

M�∑
m=1

�m
1
(x1)�

m
2
(x2)…�m

�
�

(x
�
�

).

A(F −�,F −�) = A(F,F) − 2A(F,�) − A(�,�)

(9)A(F,F) =

�
�∏

i=1

ai(fi, fi)

(10)A(F,�) = A

(
�
�∏

i=1

fi,�

)
.

(11)A(F,�) =

M�∑
m=1

�
�∏

i=1

ai(fi,�
m
i
).

computed approximations to the rest of the unknowns fj , for 
j ≠ � are assumed to be known and therefore not modified 
in the current iteration.

Thus, at the stage of computing component � in the cur-
rent iteration, the unknown reads

where the part in brackets is known and computable, and the 
term A(F, F) results

The term A(F,�) reads for the general case described in (10)

where the linear form 𝓁� (⋅) depends on known functions fj 
(for j ≠ � ) and � . Characterizing 𝓁� (⋅) requires integrating 
� along all dimensions but the i-th. In any case, the linear
form 𝓁� (⋅) may be described by its Riesz representation with
respect to a� (⋅, ⋅) , g such that, for all f⋆ ∈ Vi

Remark 4 (Computing the Riesz representation g) The Riesz 
representation of 𝓁� (⋅) with respect to a� (⋅, ⋅) , g, is introduced 
for convenience in the following developments. In practice, 
computing function g ∈ L2(�� ) (or a discrete approxima-
tion) requires solving the linear problem (14) for all f⋆ . 
This is exactly the strategy adopted in [14] to approximate a 
multidimensional continuous function, and requires solving 
a linear system of equations with the matrix that represents 
the sectional bilinear form a� (⋅, ⋅) . In the following, the focus 
is made in approximating and operating with discrete objects 
expressed in terms of tensors and it is convenient to identify 
the right-hand-side of the problems to be solved with func-
tion g (or vector g).

In the particular case of separable � , see (11), the expres-
sion (13) becomes

Therefore, the expression for 𝓁� (⋅) is

F =

[∏
j≠�

fj

]
f� ,

(12)
A(F,F) =

[∏
j≠�

aj(fj, fj)

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=∶�(computable)

a� (f� , f� ).

(13)A(F,�) = A

([∏
j≠�

fj

]
f� ,�

)
∶= �� (f� )

(14)�𝛾 (f
⋆) = a𝛾 (g, f

⋆).

(15)
A(F,�) =

M�∑
m=1

[∏
j≠�

aj(fj,�
m
j
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶�m(computable)

a� (f� ,�
m
�
).



and therefore the Riesz representation g of 𝓁� (⋅) , see (14), is 
in the case of the separable input � given in (8),

Thus,  the funct ional  to  be minimized reads 
J(f� ) = � a� (f� , f� ) − 2�� (f� ) , and the solution f� of this sec-
tional problem is such that for all f⋆ ∈ V𝛾

Problem (18) is linear and sectional, and consists in iden-
tifying the first arguments of the bilinear form, that is it 
reduces to

2.3  PGD Greedy Modal Updating

The PGD strategy consists in successively computing 
rank-one approximations, aiming at each step to better fit 
the unresolved part of the function to be approximated, � . 
Thus, once a rank-M approximation F is obtained, see (1) 
or its algebraic counterpart (2), the next step is to obtain 
�F =

∏�
�

i=1
�fi as the rank-one approximation of � − F . 

Then, the updated function F + �F is taken as the rank-M + 1 
approximation. This is equivalent to taking f M+1

i
= �fi , for 

i = 1,… , �
�
.

The computation of �F as the rank-one approximation 
of � − F is performed using the methodology presented in 
Sect. 2.2. This strategy of computing each term finding the 
optimal at each stage is classifying the PGD approach as a 
greedy algorithm. It consists in repeatedly finding rank-one 
approximations of the remaining residual.

At this stage, an important point in the algorithm is how 
to select a proper stopping criterion to decide the number of 
terms that provide a fair enough approximation and how to 
implement it. The simplest strategy consists in controlling 
the amplitude of each term and to truncate the sum when 
the amplitude of the current mode is significantly lower than 
the first one.

This requires introducing the normalized version of 
each sectional mode, that is replacing fi by f m

i
∕‖f m

i
‖ , for 

i = 1,… , �
�
 , m = 1,… ,M , being ‖f m

i
‖ =

√
ai(f

m
i
, f m
i
) . The 

norms dividing each sectional mode are accumulated in the
amplitude of each term, �m =

∏�
�

i=1
‖f m

i
‖.

(16)�� (f� ) =

M��
m=1

�ma� (f� ,�
m
�
) = a�

⎛
⎜⎜⎝
f� ,

M��
m=1

�m�
m
�

⎞
⎟⎟⎠

(17)g =

M�∑
m=1

�m�
m
�
.

(18)𝛼 a𝛾 (f𝛾 , f
⋆) = �𝛾 (f

⋆) = a𝛾 (g, f
⋆)

(19)f� =
1

�
g.

Thus, the expression for the separated approximation (1) 
is rewritten in a normalized version as

This allows deciding when to truncate the PGD expansion 
in the basis of the evolution of the amplitudes. For exam-
ple, a common strategy is to keep computing terms while 
𝜎m ≥ 𝜂⋆𝜎1 , for some tolerance 𝜂⋆ setting the expected accu-
racy in the PGD truncation: the lower is 𝜂⋆ , the larger the 
number of PGD terms, M, is expected.

2.4  Tensorial Version of Least‑Squares PGD

As stated in Sect. 1.1, the functional and tensorial format 
for multidimensional data are equivalent once the functional 
space is discretized. Thus, the algorithm devised in the pre-
vious section is readily adapted to deal with multidimen-
sional data in tensorial format. In this case, the input data 
is a tensor � ∈ ℝ

n1×n2×⋯×n
�� to be approximated by a tensor 

F in the same space and expressed in a separable format, as 
indicated in Eq. (2).

The sectional bilinear forms ai(⋅, ⋅) , i = 1,… , �
�
 are repre-

sented in the tensorial format by their discrete versions in the 
interpolation spaces, that is by matrices Ai ∈ ℝ

ni×ni . Thus, 
the application of the bilinear form to functions is identified 
by the scalar product of vectors, namely

being f i and f⋆
i
 the vectors in ℝni representing fi and f⋆

i
.

The conceptual steps of the methodology are identical. 
In the following, the main points of the procedure devised 
in Sects. 2.2 and 2.3 are revisited in their tensorial forms.

Note that the aim of the algorithm is producing a sepa-
rable tensor F fairly approximating � , as in (2). The nor-
malized form, analogous to (20), is preferred to control the 
importance of the subsequent terms and also to compare 
the successive iterations in the alternating directions loop. 
This form reads

where f i , i = 1,… , �
�
 , are unit vectors and the multi-tenso-

rial product is introduced to shorten the notation.
The scalar � introduced in (12) is in the tensorial format 

defined as

(20)F(x1, x2,… , x
�
�

) =

M∑
m=1

�m

�
�∏

i=1

f m
i
(xi).

ai(fi, f
⋆
i
) = f�

i
Aif

⋆
i

(21)

F =

M∑
m=1

𝜎mf
m
1
⊗ fm

2
⊗⋯⊗ fm

�
�

=

M∑
m=1

𝜎m

�
�⨂

j=1

fm
j



Let us denote by g ∈ ℝ
n� the discrete representation of the 

linear form 𝓁� (⋅) . Equation (13) is rewritten as

where vector g is the discrete representation of the linear 
form 𝓁� (⋅) in (13). Recall that in the iteration loop, the 
unknown is f � and all the rest ( f j for j ≠ � ) are considered 
to be known. Thus, vector g is the result of contracting all
the indices of tensor � but the �-th one with tensor 

⨂
j≠� f j

and using the sectional matrices Aj in each dimension. This 
results in computing g such that

this is written in a compact form using symbol ⋮ , that indi-
cates tensor contraction of all possible indices. In this case,
provided that � is a tensor of �

�
 dimensions and 

⨂�
�

j≠�
f j is

a tensor of �
�
− 1 dimensions, this means summing up in all 

indices ij for j = 1,… , �
�
 with j ≠ � . The expansion in terms 

of all the indices of the expression (24) is such that each 
component [g]i� , for i� = 1,… , n� of g reads

Then, the solution analogous to (19) is

As noted in (15), in the case � is already available in a 
separable format, the expressions are simpler. Indeed, the 
separable version of � analogous to (8) reads

And the coefficients �m defined in (15) are defined now by

In this particular situation (for a separable � that has to be 
compressed), the computation of f � , analogous to (17) is 
straightforwardly given by taking

(22)� ∶=

�
�∏

j≠�

f�
j
Ajf j.

(23)A(F,�) = A

([⨂
j≠𝛾

f j

]
⊗ f 𝛾 ,𝛷

)
= g�A𝛾 f 𝛾 ,

(24)g = � ⋮
⨂
j≠�

[
Ajf j

]

(25)

[g]i� =

n1∑
i1=1

⋯

n�−1∑
i�−1=1

n�+1∑
i�+1=1

⋯

�
�∑

i
��
=1

[�]i1…i�−1i� i�+1…i
��

�
�∏

j≠�

[
Ajf j

]
ij

(26)f � =
1

�
g

(27)� =

M𝜙∑
m=1

�m
1
⊗ �m

2
⊗⋯⊗ �m

�
�

(28)

�m =
∏
j≠�

f�
j
Aj�

m
j
, for m = 1,… ,M�, and for some �

As indicated in Sect. 2.3, in the greedy loop (loop in the 
number of PGD terms, m) the function to be approximated 
is not � but the remaining residual, that is

In the case of the PGD separation, when � is a general ten-
sor, the computation of g has to be modified and, instead of 
(24), one has

For a separated � (PGD compression), taking this into the 
account consists in adding more terms to the description of 
the function to be approximated. Thus, in the iteration for 
f � , (29)g has to be modified to accounting for previously 
computed terms, that is

Algorithm 1 describes the full procedure for the case of PGD 
compression (applied to a separable �).

Note that Algorithm 1 includes two different tolerances, � 
and 𝜂⋆ . These tolerances are used for different purposes. The 
value of 𝜂⋆ is used to set the stopping criterion of the greedy 
algorithm, that is to decide when to stop the m-loop, as indi-
cated in Sect. 2.3. Instead, � is used as the criterion to stop 
the �-iterations (alternating-directions scheme). This assesses 
both the difference between to successive amplitudes and the 
norm of the difference of the normalized sectional modes.

Remark 5 (Differences with tensor separation, with nonsepa-
rable � ) The algorithm for PGD separation is very similar 
to Algorithm 1 for PGD compression. The only difference 
is to compute g using (30) instead of (31).

Remark 6 (Selecting different least-squares criteria for each 
dimension) Most commonly, the sectorial bilinear forms 
ai(⋅, ⋅) are taken as standard L2 products in each sectorial 
space �i . This translates in the discrete format in taking the 
sectional matrices Ai equal to the standard mass matrices 
associated with the discretization. Note that, for a 1D sec-
tional space �i =]ai, bi[ , this is a simple tridiagonal matrix. In 
the case of being � a genuinely algebraic tensor (and not the 

(29)g =

M�∑
m=1

�m�
m
�
.

� −

m−1∑
m̃=1

𝜎m̃f
m̃
j
.

(30)

g =

(
� −

m−1∑
m̃=1

𝜎m̃f
m̃
j

)
⋮
⨂
j≠𝛾

[
Ajf j

]

=� ⋮
⨂
j≠𝛾

[
Ajf j

]
−

m−1∑
m̃=1

𝜎m̃

(∏
j≠𝛾

f�
j
Ajf

m̃
j

)
f m̃
𝛾

(31)g =

M𝜙∑
m=1

𝛽m�
m
𝛾
−

m−1∑
m̃=1

𝜎m̃

(∏
j≠𝛾

f�
j
Ajf

m̃
j

)
f m̃
𝛾



  

discretization of a multidimensional function), the Euclidean 
norm is obtained by taking Ai equal to the identity matrix.

In some cases, prior information of the function � to be 
approximated may suggest alternative choices for the projec-
tion criteria. Thus, different sectional Gram matrices Ai could 
be adopted to preserve some features of the approximation.

3  Operating with Separated 
Representations

The methodology presented in Sect. 2.4 and illustrated in 
Algorithm 1 provides separable approximations of multi-
dimensional arrays. This is aiming at separating a multidi-
mensional tensor � in general format or compressing (into 
a separated expression with less terms) a tensor already 
expressed in a separated format.

The current section is devoted to devise strategies to 
operate with this type of separable objects. The sum or the 
product of two separated tensors are straightforward. Let 
us assume that the input data are tensors � and �  , both in 
ℝ

n1×⋯×n
�� , given by

The sum � + �  and the Hadamard product � ⋅ �  (compo-
nent by component product, corresponding to the command 
“.*” in matlab) result in separated tensors with M� +M� 
and M�M� terms, respectively. The different terms in the 
resulting expressions, in particular with the product, may 
include some redundant information. Therefore, the PGD 
compression strategy devised above is to be eventually 
applied to reduce the number of terms.

Thus, we select as illustrative examples of nontriv-
ial operations, the division term by term of two tensors 
expressed in their separable formats (Hadamard division) 
and the solution of linear systems of equations correspond-
ing to parametrized problems.

3.1  Hadamard Division

The Hadamard division is a simple operation between two 
multidimensional tensors, � and �  as defined in (32). It is 
denoted by �⊘ �  and consists in a component by compo-
nent division. This operation is performed in matlab by 
command “./”.

The operation is extremely simple if the full tensor is 
available in its multidimensional format. The aim of this 
section is to devise an algorithm to perform this operation 
between to tensors expressed in the separable format, with-
out reconstructing the full tensor. Thus, the goal is to obtain 
a separable approximation of

in a PGD fashion.
The rationale of the derivation of the algorithm is similar 

to the PGD separation and compression described in Sect. 2. 
First, it is noted that F is such that

(32)� =

M𝜙∑
m̂=1

�
�⨂

j=1

�m̂
j

and � =

M𝜓∑
m̃=1

�
�⨂

j=1

� m̃
j
.

(33)F = �⊘ �



and a rank-one approximation with the form 
F = fm

1
⊗ fm

2
⊗⋯⊗ fm

�
�

 is sought.
The rank-one problem is solved with alternating direc-

tions iterative scheme, that is computing f � , for � = 1,… , �
�
 , 

while assuming that the rest of terms ( f j for j ≠ � ) are 
known. The equation for f � is found multiplying the two
sides of (34) by a test tensor F⋆ =

�⨂
j≠𝛾 f j

�
⊗ f⋆

𝛾
 and 

enforcing equation

for any possible value of f⋆
𝛾
 . Equation (35) results in com-

puting f � with the expression

where the coefficients 𝛼m̃ , for m̃ = 1,… ,M𝜓 and 𝛽m̂ , for 
m̂ = 1,… ,M𝜙 are given by

Analogously to Sect.  2.4, this rank-one solver is embed-
ded in a greedy loop (for m = 1, 2,… ). The idea is that the 
approximation with m − 1 terms Fm−1 is available and this is 
to be updated by �F such that Fm = Fm−1 + �F . The remain-
ing residual unknown �F is the solution of

And a rank-one approximation of the solution of (37) in the
form �F =

⨂�
�

j=1
�f j is sought. Note that this requires just

modifying the right-hand-side of (34), replacing � by 
� − Fm−1 ⊙ � .

Algorithm 2 describes how to obtain the Hadamard divi-
sion of tensors � and �  . A first version of this algorithm was 
included in [3, 10, 11] as part of a PGD solver for parametric 
nonlinear systems of equations. 

(34)F⊙ � = �

(35)A(F⊙ � −�,F⋆) = 0

(36)f 𝛾 =

⎡⎢⎢⎣

M𝜙�
m̂=1

𝛽m̂�
m̂
𝛾

⎤⎥⎥⎦
⊘

⎡⎢⎢⎣

M𝜓�
m̃=1

𝛼m̃�
m̃
𝛾

⎤⎥⎥⎦

𝛼m̃ =
∏
j≠𝛾

[(
� m̃

j
⊙ f j

)�

Ajf j

]
, and

𝛽m̂ =
∏
j≠𝛾

[
�m̂�

j
Ajf j

]

(37)𝛿F⊙ � = � − Fm−1 ⊙ �



 

3.2  Parametric Linear System of Equations

The Hadamard division analyzed in the previous section is 
just an example of a complex operation that can be per-
formed with two separable input tensors. As mentioned 
above, this is used as key point of PGD for a nonlinear 
solver. Another complex operation, extremely useful in the 
context of obtaining Computational Vademecums with PGD, 
is the solution of algebraic linear systems of equations with 
parametric dependence. A particular version of this algo-
rithm is devised in [18] to solve parametric lattice structures 
in linear regime.

In a continuous setting (that is in a continuous descrip-
tion of the parametric dependence), the problem reads: find 
vector u(�) such that

that is, being the solution of a n × n linear system of alge-
braic equations depending on some parameter �.

It is assumed that input matrix K(�) and input vector b(�) 
are expressed in a separable fashion. Thus, the PGD solver 
for linear systems of equations is devised to obtain a separa-
ble expression of the parametric dependence of the unknown 
u(�) . Obviously, this is to be carried out without reconstruct-
ing the full multidimensional parametric dependence, and 
avoiding the curse of dimensionality.

Following the rationale of the previous section, we 
present the methodology in a discrete format. Thus, input 
matrix K(�) is given as a tensor 𝕂 ∈ ℝ

n×n×n1×⋯×n
��

where (non parametric) matrices Km̂ ∈ ℝ
n×n , for 

m̂ = 1,… ,M𝜙 are complemented to a full parametric tensor 
dependency by the set of vectors �m̂

j
∈ ℝ

nj , j = 1,… , �
�
 . 

Vectors �m̂
j

 are the discrete representations of sectional 
modes in the j-th sectional dimension, that is some functions 
𝜙m̂
j
(𝜇j).
Similarly, input vector b(�) is given as a tensor 

B ∈ ℝ
n×n1×⋯×n

��

(38)K(�)u(�) = b(�)

(39)� =

M𝜙∑
m̂=1

Km̂ ⊗

�
�⨂

j=1

�m̂
j

(40)B =

M𝜓∑
m̃=1

bm̃ ⊗

�
�⨂

j=1

� m̃
j

where (non parametric) vector bm̃ ∈ ℝ
n , for m̃ = 1,… ,M𝜓 

are complemented by vectors � m̃
j
∈ ℝ

nj , j = 1,… , �
�
.

Then, the tensorial equation to solve is

and the solution sought in separated format is written as

Note that the product between � and U in (41) must be 
understood in the sense that it provides a tensor representa-
tion of the parametric equation (38). This corresponds to the 
following definition of � ⋅ U , taking the expressions for � 
and U given in (39) and (42):

The product in parametric sectional dimensions is of Had-
amard type because it represents the product of sectional 
modes. In other words, �m̂

j
⊙ fm

j
 represents 𝜙m̂

j
(𝜇j) f

m
j
(𝜇j) . 

The behavior in the algebraic dimension, is different because 
it actually represents the standard matrix-vector product.

The first rank-one approximation, that is taking

that better approximates �−1 ⋅ B is considered in detail to 
illustrate Algorithm 3 and its main aspects.

As in the previous example, the rank-one problem is 
solved with alternating directions iterative scheme. In this 
case, we have two types of iterations.

3.2.1  Parametric Rank‑One Iterations

First, the standard parametric sectional problem consists in 
computing f � in (44), for � = 1,… , �

�
 , while assuming that 

the rest of terms ( u and f j for j ≠ � ) are known. The equa-
tion for f � is found multiplying the two sides of (41) by a
test tensor U⋆ = u⊗

�⨂
j≠𝛾 f j

�
⊗ f⋆

𝛾
 and enforcing 

equation

(41)� ⋅ U = B

(42)U =

M∑
m=1

um ⊗

�
�⨂

j=1

fm
j
.

(43)� ⋅ U =

M∑
m=1

M𝜙∑
m̂=1

[
Km̂

⋅ um
]
⊗

�
�⨂

j=1

[
�m̂
j
⊙ fm

j

]
.

(44)U ≈ u⊗

�
�⨂

j=1

f j

(45)A(� ⋅ U − B,U⋆) = 0



for all possible f⋆
𝛾
.

Note that for the rank-one solution in (44)

therefore

where A0 stands for the matrix describing the space sec-
tional dimension of A(⋅, ⋅) (corresponding to u ). Similarly

Thus, the solution f � fulfilling (45) for every f⋆
𝛾
 is

3.2.2  Space Rank‑One Iteration

The iteration for the space sectional dimension (the nonpara-
metric sectional dimension) consists in computing u in (44), 
while assuming that the rest of terms ( f j for j = 1,… , �

�
 ) 

(46)� ⋅ U =

M𝜙∑
m̂=1

[
Km̂

⋅ u
]
⊗

�
�⨂

j=1

[
�m̂
j
⊙ f j

]

(47)

A(� ⋅ U,U⋆)

=

M𝜙∑
m̂=1

[
u�Km̂�A0u

]∏
j≠𝛾

[(
�m̂
j
⊙ f j

)�

Ajf j

]

�����������������������������������������������������
𝛼m̂

…

[(
�m̂
𝛾
⊙ f 𝛾

)�

A𝛾 f
⋆
𝛾

]

(48)

A(B,U⋆) =

M𝜓∑
m̃=1

[
bm̃�A0u

]∏
j≠𝛾

[
� m̃�

j
Ajf j

]

�����������������������������������
𝛽m̃

…
[
� m̃�

𝛾
A𝛾 f

⋆
𝛾

]

(49)
f 𝛾 =

⎡
⎢⎢⎣

M𝜓�
m̃=1

𝛽m̃�
m̃
𝛾

⎤
⎥⎥⎦

�����������
=∶g

⊘

⎡
⎢⎢⎣

M𝜙�
m̂=1

𝛼m̂�
m̂
𝛾

⎤
⎥⎥⎦
.

are known. In this case the test tensor U⋆ = u⋆ ⊗
�⨂�

�

j=1
f j

�

is used to enforce Eq. (45), namely,

and

Thus, u fulfilling (45) for every u⋆ is the solution of the fol-
lowing n × n linear system of algebraic equations

3.2.3  Modal Updating

The computation of the sectional iterations proposed in Eqs. 
(49) and (52) stand for the first term of the PGD expansion
in (42) (for M = 1 ). For the subsequent terms ( M > 1 ), one 
has to account for the terms already computed. In practice, 
this requires to replace B in (40) by

This is equivalent to properly modify the numerator in the 
right-hand-side of (49) and the right-hand-side vector of the 
linear system (52), both denoted by g . The resulting opera-
tions are indicated in Algorithm 3. 

(50)

A(� ⋅ U,U⋆)

=

M𝜙∑
m̂=1

[
u�Km̂�A0u

⋆
] �

�∏
j=1

[(
�m̂
j
⊙ f j

)�

Ajf j

]

�����������������������������
𝛼m̂

(51)
A(B,U⋆) =

M𝜓∑
m̃=1

[
bm̃�A0u

⋆
] �

�∏
j=1

[
� m̃�

j
Ajf j

]

���������������
𝛽m̃

.

(52)
⎡⎢⎢⎣

M𝜙�
m̂=1

𝛼m̂K
m̂

⎤⎥⎥⎦
u =

M𝜓�
m̃=1

𝛽m̃b
m̃ =∶ g

(53)B =

M𝜓∑
m̃=1

bm̃ ⊗

�
�⨂

j=1

� m̃
j
−

M−1∑
m=1

um ⊗

�
�⨂

j=1

fm
j
.



4  Numerical Illustrations

All the examples described in this section are produced with 
the matlab open-source routines hosted in GitHub, https 
://git.lacan .upc.edu/zlotn ik/algeb raicP GDtoo ls. The pack-
age includes a tutorial with examples to ease the use of the 
routines.

4.1  PGD Separation of the Butterfly Curve Family

The function with six arguments given by

is defining a five-dimensional set of curves expressed as a 
polar representation of the function, r(�) = �(�, a, b, c, d, e) , 
each curve corresponding to a given value of the five 
parameters (a, b, c, d, e). Due to their shape, this family 
is denoted as the butterfly curve, see [9]. The ranges of the 
arguments of � are taken to be � ∈ [0, 2�] , a ∈ [−1, 1] , 
b ∈ [−3, 3] , c ∈ [0, 4] , d ∈ [0, 5] and e ∈ [1, 12] . Multidi-
mensional function � is discretized in to a six-dimensional 
tensor � ∈ ℝ

n�×na×nb×nc×nd×ne , obtained by uniform sampling 
along each of the six sectional dimensions, being n� = 100 , 
na = 20 , nb = 20 , nc = 20 , nd = 6 , and ne = 20 the number 
of sampling point in each dimension. This tensorial object 
is selected as a benchmark for high-order tensor separation 
because it allows a graphic representation (the butterfly 

(54)
�(�, a, b, c, d, e) = a exp(cos �) − b cos(c �) + sind(�∕e),

Fig. 1  PGD separation of the butterfly curve. Convergence of the rel-
ative error in Frobenius norm, with the number of terms of the sepa-
rated approximation

https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
https://git.lacan.upc.edu/zlotnik/algebraicPGDtools


curves) of both the original tensor and its separated approxi-
mations, see [14]. Function � defined in (54) inducing the 
butterfly curve does not accept an exact separated represen-
tation as described in (1).

Note that the six-dimensional tensor � has a number of 
n� × na × nb × nc × nd × ne entries (in this case it amounts 
to 96 millions) and the storage of the full tensor requires 
∼ 732 MB of memory. The PGD separation as described
in Algorithm 1 and available from the GitHub account is
used to obtain a separable expression of tensor � up to 800
terms, namely

(55)� ≈ FM =

M∑
m=1

fm
𝜃
⊗ fm

a
⊗ fm

b
⊗ fm

c
⊗ fm

d
⊗ fm

e
,

being M the number of PGD terms that in this case goes 
up to 800. This allows easily computing the evolution of 
the error norm with the number of terms in the separation 
(55), that is along the greedy algorithm, namely ‖� − FM‖ 
for M = 1, 2,… . Here, ‖ ⋅ ‖ stands for the Frobenius norm. 
Figure 1 depicts the evolution of the relative error with the 
number of terms, M. Note that the error associated with 
the more accurate approximation ( M = 800 ) is 3.5 × 10−4 
and that instead of the ∼732 Mb of storage memory of 
the full tensor, the separated version with 800 terms has 
800 × (n� + na + nb + nc + nd + ne) = 148,800 entries that 
amount to ∼1.1 MB. That is, accepting an error of less than 
0.1% allows a compression factor reducing 700 times the 
storage memory.
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Fig. 2  PGD separation of the butterfly curve. Illustration of the approximation for four different sets of parameters. In each case three PGD solu-
tions (corresponding to 5, 15 and 90 modes) are compared with the exact butterfly curve



In Fig. 2 four different instances of the Butterfly curve 
are displayed for six values of the parameters in the discre-
tized range. In each of the four cases, the full order tensor is 
associated with the exact curve, in black, and three approxi-
mations corresponding to using 5, 15 and 90 PGD terms (in 
pink, blue and green, respectively). Note that, according to 
the graph in Fig. 1, 90 terms provide a solution with an error 
lower than 1%. Therefore, solutions with numbers of modes 
larger than 90 are indistinguishable from the exact solution 
to the naked eye.

4.2  PGD Division, Compression and Separation

The PGD Hadamard division (Algorithm 2) is presented 
next by using a synthetic example. Two three-dimensional 
tensors D and E are built based on the following functions,

being f m
x
(x) = sin(�xm) , f m

y
(y) = ym and f m

z
(z) = mz and

gm
x
(x) = cos(�xm) + 1 , gm

y
(y) = y1∕m + 1 , gm

z
(z) = z + m.

The corresponding separated tensors E and D are
obtained by evaluating previous functions f m

i
 and gm

i
 , for 

i = x, y, z and m = 1, 2, 3 . Each spatial direction lies in the 
[0, 1] range, that is (x, y, z) ∈ [0, 1]3 , and are discretized with 
70, 130 and 190 uniformly spaced points (respectively to 
x, y, and z). The Hadamard division algorithm devised in 
Sect. 3.1 produces a separated tensor P ≈ E⊘ D , without 
reconstructing the full tensor versions of E and D . Note that 
each full tensor requires storing 70 × 130 × 190 = 1,729,000 
entries, wether their separated versions are expressed with 
only 3 × (70 + 130 + 190) = 1 170 entries. In this toy exam-
ple, the direct Hadamard division of the full tensors is per-
formed to obtain a reference value Rfull = E⊘ D . Thus, the 
error is measured as ‖P − Rfull‖∞∕‖Rfull‖∞.

The same example is used to test the PGD compression. 
Once P is computed, it can be readily compressed into 
Pcomp using Algorithm 1. Also the reference solution Rfull is 
expressed in separable format with the separation strategy 
devised in Sect. 2, this is denoted by Rcomp and one would 
expect that it performs similarly to Pcomp.

Figure 3 shows the evolution of the modal amplitude (left 
panel) and the convergence of the error with the number 
of modes (right panel) for P , Pcomp and Rcomp . In the error 
convergence curves, the error is computed in all cases with 
respect to Rfull . In this example 84 terms for P suffice to 
obtain a separable representation with relative error in infi-
nite norm of 10−7 . As expected, the solutions Pcomp and Rcomp 
that result from compressing P and Rfull behave similarly, 
both in the evolution of the amplitude of their terms and in 
the evolution of the relative error.

4.3  PGD Linear System Solver

The PGD linear system solver is used next to solve a higher-
dimensional linear system arising from the parameterization 
of an advection-diffusion problem,

E(x, y, z) =

3∑
m=1

f m
x
(x) f m

y
(y) f m

z
(z), and

D(x, y, z) =

3∑
m=1

gm
x
(x) gm

y
(y) gm

z
(z)

Fig. 3  Top panel: evolution of amplitude � with the number of terms 
of: (i) the pgd-Hadamard-division P (solid line), (ii) its compressed 
version Pcomp (dashed line), and (iii) direct separation of Rfull , the 
reference solution (dividing full tensors) (doted line). Bottom panel: 
convergence of the relative error in infinite norm with the number of 
terms in the solution for (i), (ii) and (iii) with respect to Rfull



Fig. 4  Potential flow velocity 
map distributions: a vp1 for the 
upper branch, and b vp2 for the 
lower branch. c Domain for the 
convection diffusion problem

Fig. 5  Concentration distribution uPGD of the stationary convection diffusion system, using the PGD linear system solver, with predominant flow 
in a upper branch, b lower branch and c both branches opened. d Relative error PGD versus finite element convergence



where � is the diffusivity, and v(x) is a vector field describ-
ing the advection velocity. The velocity v(x) is taken to be 
parametric, as a linear combination of two fields v1(x) and 
v2(x) , shown in Fig. 4a, b. Thus, parameters � and � are 
introduced such that

being the ranges of variation of the parameters such that 
� ∈ [50, 1000] and � ∈ [50, 1000].

The discrete version of the problem before enforcing the
essential boundary conditions (those on �D ) reads,

where K� is the stiffness matrix corresponding to the second 
order operator, Cv1

 and Cv2
 the convection matrices corre-

sponding to the velocity fields v1 and v2 respectively, and f  
the vector accounting for the Neumann boundary conditions 
(which in this case are independent of the parameters). As 
indicated in Fig. 4c, the Neumann boundary conditions are 
homogeneous everywhere on �N , except in the zone of the 
narrowing, where uN ≠ 0 enforces a flux that accounts for 
an injection of the mass (or heat) that increases locally the 
concentration (or temperature). Note that the discrete form 
(58) is straightforwardly expressed in an affine decomposi-
tion, namely

with K1 = K� , g1(�) = h1(�) = 1 ; K2 = Cv1
 , g2(�) = � , 

h2(�) = 1 ; K3 = Cv2
 , g3(�) = 1 , h3(�) = �.

The essential (or Dirichlet) boundary conditions are 
implemented by suppressing the equations corresponding to 
the prescribed degrees of freedom and bringing to the right-
hand-side the corresponding columns of K(�, �) multiplied 
by the prescribed value of the concentration u.

In practice (58) results in the following reduced version

where the matrices and vectors with the subscript ⋆ do not 
include the prescribed degrees of freedom, vectors f⋆

𝜈
 , f⋆

v1
 

and f⋆
v2

 are the linear combination of the columns of matri-
ces K� , Cv1

 and Cv2
 weighted with the prescribed values of 

the concentration u.
The parametric dimensions are discretized with 100 

equally spaced points each. Thus, functions gm and hm , 

(56)

⎧
⎪⎨⎪⎩

−∇ ⋅ (�∇u) + v ⋅ ∇u = 0 in �

u = uD on �D

n ⋅ �∇u = uN(x) on �� ⧵ �D = �N

(57)v(x, �, �) = � v1(x) + � v2(x),

(58)
(
K� + �Cv1

+ �Cv2

)
u = f ,

(59)K(�, �) =

3∑
m=1

Km gm(�) hm(�)

(60)
(
K⋆

𝜈
+ 𝛼 C⋆

v1
+ 𝛽 C⋆

v2

)
u⋆ = f⋆ − f⋆

𝜈
− 𝛼 f⋆

v1
− 𝛽 f⋆

v2
,

m = 1, 2, 3 are described by vectors of 100 components and 
system (60) is readily written in the format of (41). Then, 
the input for Algorithm 3 is ready and the solution provided 
is seen as a Vademecum (explicit parametric solution), con-
taining is a separated format the concentration fields for all 
possible values of the parameters � and �.

Figure 5a–c show, in the form of a concentration map 
(distribution of u(x) ) the PGD solution at some specific val-
ues of � and � . Figure 5a illustrates a solution in which the 
advection is dominated by v1 , Fig. 5b with advection domi-
nated by v2 and Fig. 5c with an intermediate situation.

The evolution of the error (with respect to the full Finite 
Element solution for all possible values of the parameters 
in the discretized 100 × 100 grid) measured in an Euclidean 
norm (or L2 norm) for the four-dimensional space (two space 
dimensions plus two parametric dimensions) is displayed in 
Fig. 5d. It is worth noting that with less than 100 PGD terms 
the error is reduced to 0.5%.

5  Closure

The PGD Least-Squares strategy to produce a separated 
approximation of a multidimensional tensor is devised as 
the discrete form of approximating a multivariate function. 
This philosophy is generalized to operate with separated 
objects, performing complex operations (division, matrix 
inversion...) in the separated format, that is without generat-
ing the full multidimensional tensor and therefore precluding 
the curse of dimensionality.

A set of matlab routines implementing the Encapsu-
lated PGD toolbox, that is the strategies described in the 
paper, is openly released at https ://git.lacan .upc.edu/zlotn 
ik/algeb raicP GDtoo ls.

The toolbox character of these algorithms is strengthen 
by the definition of a class of objects corresponding to sepa-
rated tensors, and the corresponding elementary operations.

The application of this strategy to several illustrative test 
cases shows the efficiency and implementation convenience 
of using the toolbox.
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