76 research outputs found

    Anti-inflammatory therapy with nebulised dornase alfa in patients with severe COVID-19 pneumonia A Randomised Clinical Trial

    Get PDF
    BACKGROUND: SARS-CoV2 infection causes severe, life-threatening pneumonia. Hyper-inflammation, coagulopathy and lymphopenia are associated with pathology and poor outcomes in these patients. Cell-free (cf) DNA is prominent in COVID-19 patients, amplifies inflammation and promotes coagulopathy and immune dysfunction. We hypothesized that cf-DNA clearance by nebulised dornase alfa may reduce inflammation and improve disease outcomes. Here, we evaluated the efficacy of nebulized dornase alfa in patients hospitalised with severe COVID-19 pneumonia. METHODS: In this randomised controlled single-centre phase 2 proof-of-concept trial, we recruited adult patients admitted to hospital that exhibited stable oxygen saturation (≥94%) on supplementary oxygen and a C-reactive protein (CRP) level ≥30mg/L post dexamethasone treatment. Participants were randomized at a 3:1 ratio to receive twice-daily nebulised dornase alfa in addition to best available care (BAC) or BAC alone for seven days or until hospital discharge. A 2:1 ratio of historical controls to treated individuals (HC, 2:1) were included as the primary endpoint comparators. The primary outcome was a reduction in systemic inflammation measured by blood CRP levels over 7 days post-randomisation, or to discharge if sooner. Secondary and exploratory outcomes included time to discharge, time on oxygen, D-dimer levels, lymphocyte counts and levels of circulating cf-DNA. RESULTS: We screened 75 patients and enrolled 39 participants out of which 30 in dornase alfa arm, and 9 in BAC group. We also matched the recruited patients in the treated group (N=30) to historical controls in the BAC group (N=60). For the the primary outcome, 30 patients in the dornase alfa were compared to 69 patients in the BAC group. Dornase alfa treatment reduced CRP by 33% compared to the BAC group at 7-days (P=0.01). The dornase alfa group least squares mean CRP was 23.23 mg/L (95% CI 17.71 to 30.46) and the BAC group 34.82 mg/L (95% CI 28.55 to 42.47). A significant difference was also observed when only randomised participants were compared. Furthermore, compared to the BAC group, the chance of live discharge was increased by 63% in the dornase alfa group (HR 1.63, 95% CI 1.01 to 2.61, P=0.03), lymphocyte counts were improved (least-square mean: 1.08 vs 0.87, P=0.02) and markers of coagulopathy such as D-dimer were diminished (least-square mean: 570.78 vs 1656.96μg/mL, P=0.004). Moreover, the dornase alfa group exhibited lower circulating cf-DNA levels that correlated with CRP changes over the course of treatment. No differences were recorded in the rates and length of stay in the ICU or the time on oxygen between the groups. Dornase alfa was well-tolerated with no serious adverse events reported. CONCLUSION: In this proof-of-concept study in patients with severe COVID-19 pneumonia, treatment with nebulised dornase alfa resulted in a significant reduction in inflammation, markers of immune pathology and time to discharge. The effectiveness of dornase alfa in patients with acute respiratory infection and inflammation should be investigated further in larger trials

    Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    Get PDF
    ABSTRACT: The prothrombinase complex catalyzes the activation of prothrombin to R-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334–335 an

    Water in Cavity−Ligand Recognition

    Get PDF
    We use explicit solvent molecular dynamics simulations to estimate free energy, enthalpy, and entropy changes along the cavity-ligand association coordinate for a set of seven model systems with varying physicochemical properties. Owing to the simplicity of the considered systems we can directly investigate the role of water thermodynamics in molecular recognition. A broad range of thermodynamic signatures is found in which water (rather than cavity or ligand) enthalpic or entropic contributions appear to drive cavity-ligand binding or rejection. The unprecedented, nanoscale picture of hydration thermodynamics can help the interpretation and design of protein-ligand binding experiments. Our study opens appealing perspectives to tackle the challenge of solvent entropy estimation in complex systems and for improving molecular simulation models

    A Novel Conserved Isoform of the Ubiquitin Ligase UFD2a/UBE4B Is Expressed Exclusively in Mature Striated Muscle Cells

    Get PDF
    Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3′ introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis

    Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick

    Get PDF
    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo

    Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial

    Get PDF
    \ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Background: Individuals with serum antibodies to citrullinated protein antigens (ACPA), rheumatoid factor, and symptoms, such as inflammatory joint pain, are at high risk of developing rheumatoid arthritis. In the arthritis prevention in the pre-clinical phase of rheumatoid arthritis with abatacept (APIPPRA) trial, we aimed to evaluate the feasibility, efficacy, and acceptability of treating high risk individuals with the T-cell co-stimulation modulator abatacept. Methods: The APIPPRA study was a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial done in 28 hospital-based early arthritis clinics in the UK and three in the Netherlands. Participants (aged ≥18 years) at risk of rheumatoid arthritis positive for ACPA and rheumatoid factor with inflammatory joint pain were recruited. Exclusion criteria included previous episodes of clinical synovitis and previous use of corticosteroids or disease-modifying antirheumatic drugs. Participants were randomly assigned (1:1) using a computer-generated permuted block randomisation (block sizes of 2 and 4) stratified by sex, smoking, and country, to 125 mg abatacept subcutaneous injections weekly or placebo for 12 months, and then followed up for 12 months. Masking was achieved by providing four kits (identical in appearance and packaging) with pre-filled syringes with coded labels of abatacept or placebo every 3 months. The primary endpoint was the time to development of clinical synovitis in three or more joints or rheumatoid arthritis according to American College of Rheumatology and European Alliance of Associations for Rheumatology 2010 criteria, whichever was met first. Synovitis was confirmed by ultrasonography. Follow-up was completed on Jan 13, 2021. All participants meeting the intention-to-treat principle were included in the analysis. This trial was registered with EudraCT (2013–003413–18). Findings: Between Dec 22, 2014, and Jan 14, 2019, 280 individuals were evaluated for eligibility and, of 213 participants, 110 were randomly assigned to abatacept and 103 to placebo. During the treatment period, seven (6%) of 110 participants in the abatacept group and 30 (29%) of 103 participants in the placebo group met the primary endpoint. At 24 months, 27 (25%) of 110 participants in the abatacept group had progressed to rheumatoid arthritis, compared with 38 (37%) of 103 in the placebo group. The estimated proportion of participants remaining arthritis-free at 12 months was 92\ub78% (SE 2\ub76) in the abatacept group and 69\ub72% (4\ub77) in the placebo group. Kaplan–Meier arthritis-free survival plots over 24 months favoured abatacept (log-rank test p=0\ub7044). The difference in restricted mean survival time between groups was 53 days (95% CI 28–78; p<0\ub70001) at 12 months and 99 days (95% CI 38–161; p=0\ub70016) at 24 months in favour of abatacept. During treatment, abatacept was associated with improvements in pain scores, functional wellbeing, and quality-of-life measurements, as well as low scores of subclinical synovitis by ultrasonography, compared with placebo. However, the effects were not sustained at 24 months. Seven serious adverse events occurred in the abatacept group and 11 in the placebo group, including one death in each group deemed unrelated to treatment. Interpretation: Therapeutic intervention during the at-risk phase of rheumatoid arthritis is feasible, with acceptable safety profiles. T-cell co-stimulation modulation with abatacept for 12 months reduces progression to rheumatoid arthritis, with evidence of sustained efficacy beyond the treatment period, and with no new safety signals. Funding: Bristol Myers Squibb

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues
    corecore