1,046 research outputs found
Gravity in the Local Universe : density and velocity fields using CosmicFlows-4
This article publicly releases three-dimensional reconstructions of the local
Universe gravitational field below z=0.8 that were computed using the
CosmicFlows-4 catalog of 56,000 galaxy distances and its sub-sample of 1,008
type Ia supernovae distances. The article also provides measurements of the
growth rate of structure using the pairwise correlation of radial peculiar
velocities f sigma8 = 0.38(+/-0.04) (ungrouped CF4), f sigma8 = 0.36(+/-0.05)
(grouped CF4), f sigma8 = 0.30(+/-0.06) (SNIa) and of the bulk flow in the 3D
reconstructed Local Universe of 230 +/- 136 km s-1 at 300 Mpc of distance from
the observer. The exploration of 10,000 reconstructions gives that the
distances delivered by the Cosmicflows-4 catalog are compatible with a Hubble
constant of H0 = 74.5 +/- 0.1 (grouped CF4), H0 = 75.0 +/- 0.35 (ungrouped CF4)
and H0 = 75.5 +/- 0.95 (CF4 SNIa subsample).Comment: Submitted A&A Oct 31st, 2022 / (AA/2022/45331) / Accepted January
2023 All Figures and values updated after the december 2022 major correction
in CF4 catalo
Big data analyses reveal patterns and drivers of the movements of southern elephant seals
The growing number of large databases of animal tracking provides an
opportunity for analyses of movement patterns at the scales of populations and
even species. We used analytical approaches, developed to cope with big data,
that require no a priori assumptions about the behaviour of the target agents,
to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina)
in the Southern Ocean, that was comprised of >500,000 location estimates
collected over more than a decade. Our analyses showed that the displacements
of these seals were described by a truncated power law distribution across
several spatial and temporal scales, with a clear signature of directed
movement. This pattern was evident when analysing the aggregated tracks despite
a wide diversity of individual trajectories. We also identified marine
provinces that described the migratory and foraging habitats of these seals.
Our analysis provides evidence for the presence of intrinsic drivers of
movement, such as memory, that cannot be detected using common models of
movement behaviour. These results highlight the potential for big data
techniques to provide new insights into movement behaviour when applied to
large datasets of animal tracking.Comment: 18 pages, 5 figures, 6 supplementary figure
Nuclear multifragmentation time-scale and fluctuations of largest fragment size
Distributions of the largest fragment charge, Zmax, in multifragmentation
reactions around the Fermi energy can be decomposed into a sum of a Gaussian
and a Gumbel distribution, whereas at much higher or lower energies one or the
other distribution is asymptotically dominant. We demonstrate the same generic
behavior for the largest cluster size in critical aggregation models for small
systems, in or out of equilibrium, around the critical point. By analogy with
the time-dependent irreversible aggregation model, we infer that Zmax
distributions are characteristic of the multifragmentation time-scale, which is
largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
Flipper strokes can predict energy expenditure and locomotion costs in free-ranging northern and Antarctic fur seals
Acknowledgements We thank Alistair Baylis, Rachel Orben, Michelle Barbieri, Nory El Ksabi, Malcolm OâToole and Jade Vacquie-Garcia for their help in collecting the data. We are also thankful to the Institut Paul-Emile Victor for their logistic and financial support to the Kerguelen field season, and to NPRB and NSERC for their contribution in funding this project.Peer reviewedPublisher PD
Constrained caloric curves and phase transition for hot nuclei
Simulations based on experimental data obtained from multifragmenting
quasi-fused nuclei produced in central Xe + Sn collisions have
been used to deduce event by event freeze-out properties in the thermal
excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these
properties and the temperatures deduced from proton transverse momentum
fluctuations, constrained caloric curves have been built. At constant average
volumes caloric curves exhibit a monotonic behaviour whereas for constrained
pressures a backbending is observed. Such results support the existence of a
first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Production of -particle condensate states in heavy-ion collisions
The fragmentation of quasi-projectiles from the nuclear reaction +
at 25 MeV/nucleon was used to produce excited states candidates to
-particle condensation. The experiment was performed at LNS-Catania
using the CHIMERA multidetector. Accepting the emission simultaneity and
equality among the -particle kinetic energies as experimental criteria
for deciding in favor of the condensate nature of an excited state, we analyze
the and states of C and the state of O. A
sub-class of events corresponding to the direct 3- decay of the Hoyle
state is isolated.Comment: contribution to the 2nd Workshop on "State of the Art in Nuclear
Cluster Physics" (SOTANCP2), Universite Libre de Bruxelles (Belgium), May
25-28, 2010, to be published in the International Journal of Modern Physics
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
- âŠ