170 research outputs found

    Toxoplasma gondii Tissue Cyst: Cyst Wall Incorporation Activity and Matrix Cytoskeleton Proteins Paving the Way to Nutrient Acquisition

    Get PDF
    Toxoplasma gondii is an intracellular parasite that causes chronic infection by the development of bradyzoites housed in tissue cysts, preferably in the muscles and central nervous system. The composition and the function of the cyst wall are still not fully understood. Are T. gondii cysts able to incorporate nutrients through its wall? If so, how would these nutrients be traversed to cross the cyst matrix to reach the bradyzoite forms? Herein, we tested the uptake capacity of the Toxoplasma tissue cyst wall by employing some fluid-phase endocytosis tracers as peroxidase (HRP) and bovine serum albumin (BSA). Fluorescence images revealed these molecules on the cyst wall as well as in the cyst matrix. The subcellular localization of the tracer was confirmed by ultrastructural analysis showing numerous labeled vesicles and tubules distributed within the cyst matrix in close association with intracystic bradyzoite membrane, suggesting the cyst wall as a route of nutrient uptake. Furthermore, we confirmed the presence of cytoskeleton proteins, such as tubulin, actin, and myosin, in the tissue cyst matrix that may explain the nutrient input mechanism through the cyst wall. A better understanding of the nutrient acquisition process by the cyst might potentially contribute to the development of new therapeutic targets against chronic toxoplasmosis

    Structural and mechanical properties of Ti–Si–C–ON for biomedical applications

    Get PDF
    Ti–Si–C–ON films were deposited by DC reactive magnetron sputtering using different partial pressure of oxygen (pO2) and nitrogen (pN2) ratio. Compositional analysis revealed the existence of two different growth zones for the films; one zone deposited under low pO2/pN2 and another zone deposited under high pO2/pN2. The films produced under low pO2/pN2 were deposited at a lower rate and presented a fcc structure, as well as, dense and featureless morphologies. The films deposited with high pO2/pN2, consequently higher oxygen content, were deposited at a higher rate and developed an amorphous structure. The structural changes are consistent with the hardness and Young's modulus evolution, as seen by the significant reduction of the hardness and influence on the Young's modulus by increasing pO2/pN2

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MAim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    • …
    corecore