1,980 research outputs found

    Next-to-next-to-leading-order epsilon expansion for a Fermi gas at infinite scattering length

    Full text link
    We extend previous work on applying the epsilon-expansion to universal properties of a cold, dilute Fermi gas in the unitary regime of infinite scattering length. We compute the ratio xi = mu/epsilon_F of chemical potential to ideal gas Fermi energy to next-to-next-to-leading order (NNLO) in epsilon=4-d, where d is the number of spatial dimensions. We also explore the nature of corrections from the order after NNLO.Comment: 28 pages, 14 figure

    Stability of 3D Cubic Fixed Point in Two-Coupling-Constant \phi^4-Theory

    Full text link
    For an anisotropic euclidean ϕ4\phi^4-theory with two interactions [u (\sum_{i=1^M {\phi}_i^2)^2+v \sum_{i=1}^M \phi_i^4] the ÎČ\beta-functions are calculated from five-loop perturbation expansions in d=4−Δd=4-\varepsilon dimensions, using the knowledge of the large-order behavior and Borel transformations. For Δ=1\varepsilon=1, an infrared stable cubic fixed point for M≄3M \geq 3 is found, implying that the critical exponents in the magnetic phase transition of real crystals are of the cubic universality class. There were previous indications of the stability based either on lower-loop expansions or on less reliable Pad\'{e approximations, but only the evidence presented in this work seems to be sufficently convincing to draw this conclusion.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re250/preprint.htm

    New approach to Borel summation of divergent series and critical exponent estimates for an N-vector cubic model in three dimensions from five-loop \epsilon expansions

    Full text link
    A new approach to summation of divergent field-theoretical series is suggested. It is based on the Borel transformation combined with a conformal mapping and does not imply the exact asymptotic parameters to be known. The method is tested on functions expanded in their asymptotic power series. It is applied to estimating the critical exponent values for an N-vector field model, describing magnetic and structural phase transitions in cubic and tetragonal crystals, from five-loop \epsilon expansions.Comment: 9 pages, LaTeX, 3 PostScript figure

    Critical Behavior of an Ising System on the Sierpinski Carpet: A Short-Time Dynamics Study

    Full text link
    The short-time dynamic evolution of an Ising model embedded in an infinitely ramified fractal structure with noninteger Hausdorff dimension was studied using Monte Carlo simulations. Completely ordered and disordered spin configurations were used as initial states for the dynamic simulations. In both cases, the evolution of the physical observables follows a power-law behavior. Based on this fact, the complete set of critical exponents characteristic of a second-order phase transition was evaluated. Also, the dynamic exponent Ξ\theta of the critical initial increase in magnetization, as well as the critical temperature, were computed. The exponent Ξ\theta exhibits a weak dependence on the initial (small) magnetization. On the other hand, the dynamic exponent zz shows a systematic decrease when the segmentation step is increased, i.e., when the system size becomes larger. Our results suggest that the effective noninteger dimension for the second-order phase transition is noticeably smaller than the Hausdorff dimension. Even when the behavior of the magnetization (in the case of the ordered initial state) and the autocorrelation (in the case of the disordered initial state) with time are very well fitted by power laws, the precision of our simulations allows us to detect the presence of a soft oscillation of the same type in both magnitudes that we attribute to the topological details of the generating cell at any scale.Comment: 10 figures, 4 tables and 14 page

    On three dimensional bosonization

    Full text link
    We discuss Abelian and non-Abelian three dimensional bosonization within the path-integral framework. We present a systematic approach leading to the construction of the bosonic action which, together with the bosonization recipe for fermion currents, describes the original fermion system in terms of vector bosons.Comment: 15 pages, LaTe

    Duality between Topologically Massive and Self-Dual models

    Get PDF
    We show that, with the help of a general BRST symmetry, different theories in 3 dimensions can be connected through a fundamental topological field theory related to the classical limit of the Chern-Simons model.Comment: 13 pages, LaTe

    Large-Order Behavior of Two-coupling Constant ϕ4\phi^4-Theory with Cubic Anisotropy

    Get PDF
    For the anisotropic [u (\sum_{i=1^N {\phi}_i^2)^2+v \sum_{i=1^N \phi_i^4]-theory with {N=2,3N=2,3} we calculate the imaginary parts of the renormalization-group functions in the form of a series expansion in vv, i.e., around the isotropic case. Dimensional regularization is used to evaluate the fluctuation determinants for the isotropic instanton near the space dimension 4. The vertex functions in the presence of instantons are renormalized with the help of a nonperturbative procedure introduced for the simple g{\phi^4-theory by McKane et al.Comment: LaTeX file with eps files in src. See also http://www.physik.fu-berlin.de/~kleinert/institution.htm
    • 

    corecore