3,844 research outputs found

    Scatterometer Data Analysis program Final report, 1 Jun. 1968 - 31 May 1969

    Get PDF
    Evaluation and processing of scatterometer data for use in NASA Earth Resources Progra

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    Bulk Composition of GJ 1214b and other sub-Neptune exoplanets

    Full text link
    GJ1214b stands out among the detected low-mass exoplanets, because it is, so far, the only one amenable to transmission spectroscopy. Up to date there is no consensus about the composition of its envelope although most studies suggest a high molecular weight atmosphere. In particular, it is unclear if hydrogen and helium are present or if the atmosphere is water dominated. Here, we present results on the composition of the envelope obtained by using an internal structure and evolutionary model to fit the mass and radius data. By examining all possible mixtures of water and H/He, with the corresponding opacities, we find that the bulk amount of H/He of GJ1214b is at most 7% by mass. In general, we find the radius of warm sub-Neptunes to be most sensitive to the amount of H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e, Kepler-36c and Kepler-68b) but two (Kepler-11e and Kepler-30b) of the discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e and Kepler-30b have 10-18% and 5-15% bulk H/He. Conversely, little can be determined about the H2O or rocky content of sub-Neptune planets. We find that although a 100% water composition fits the data for GJ1214b, based on formation constraints the presence of heavier refractory material on this planet is expected, and hence, so is a component lighter than water required. A robust determination by transmission spectroscopy of the composition of the upper atmosphere of GJ1214b will help determine the extent of compositional segregation between the atmosphere and envelope.Comment: Updated the masses and radii of the Kepler-11 system, added Kepler-30b as well in the analysis. Accepted in ApJ, 39 pages, 9 figure

    A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions

    Full text link
    The recent discovery and characterization of the diversity of the atmospheres of exoplanets and brown dwarfs calls for the development of fast and accurate analytical models. We quantify the accuracy of the analytical solution derived in paper I for an irradiated, non-grey atmosphere by comparing it to a state-of-the-art radiative transfer model. Then, using a grid of numerical models, we calibrate the different coefficients of our analytical model for irradiated solar-composition atmospheres of giant exoplanets and brown dwarfs. We show that the so-called Eddington approximation used to solve the angular dependency of the radiation field leads to relative errors of up to 5% on the temperature profile. We show that for realistic non-grey planetary atmospheres, the presence of a convective zone that extends to optical depths smaller than unity can lead to changes in the radiative temperature profile on the order of 20% or more. When the convective zone is located at deeper levels (such as for strongly irradiated hot Jupiters), its effect on the radiative atmosphere is smaller. We show that the temperature inversion induced by a strong absorber in the optical, such as TiO or VO is mainly due to non-grey thermal effects reducing the ability of the upper atmosphere to cool down rather than an enhanced absorption of the stellar light as previously thought. Finally, we provide a functional form for the coefficients of our analytical model for solar-composition giant exoplanets and brown dwarfs. This leads to fully analytical pressure-temperature profiles for irradiated atmospheres with a relative accuracy better than 10% for gravities between 2.5m/s^2 and 250 m/s^2 and effective temperatures between 100 K and 3000 K. This is a great improvement over the commonly used Eddington boundary condition.Comment: Accepted in A&A, models are available at http://www.oca.eu/parmentier/nongrey or in CD

    On the Radii of Close-in Giant Planets

    Get PDF
    The recent discovery that the close-in extrasolar giant planet, HD209458b, transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet, τ\tau Boo b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD209458b and τ\tau Boo b in that context. We find that HD209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is not due to the thermal expansion of its atmosphere, but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet, but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (\geq0.5 A.U.), no later than a few times 10710^7 years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter

    Spatiotemporal instability of a confined capillary jet

    Full text link
    Recent experimental studies on the instability appearance of capillary jets have revealed the capabilities of linear spatiotemporal instability analysis to predict the parametrical map where steady jetting or dripping takes place. In this work, we present an extensive analytical, numerical and experimental analysis of confined capillary jets extending previous studies. We propose an extended, accurate analytic model in the limit of low Reynolds flows, and introduce a numerical scheme to predict the system response when the liquid inertia is not negligible. Theoretical predictions show a remarkable accuracy with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008

    Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks

    Get PDF
    Planetesimals in gaseous protoplanetary disks may grow by collecting dust particles. Hydrodynamical studies show that small particles generally avoid collisions with the planetesimals because they are entrained by the flow around them. This occurs when StSt, the Stokes number, defined as the ratio of the dust stopping time to the planetesimal crossing time, becomes much smaller than unity. However, these studies have been limited to the laminar case, whereas these disks are believed to be turbulent. We want to estimate the influence of gas turbulence on the dust-planetesimal collision rate and on the impact speeds. We used three-dimensional direct numerical simulations of a fixed sphere (planetesimal) facing a laminar and turbulent flow seeded with small inertial particles (dust) subject to a Stokes drag. A no-slip boundary condition on the planetesimal surface is modeled via a penalty method. We find that turbulence can significantly increase the collision rate of dust particles with planetesimals. For a high turbulence case (when the amplitude of turbulent fluctuations is similar to the headwind velocity), we find that the collision probability remains equal to the geometrical rate or even higher for St0.1St\geq 0.1, i.e., for dust sizes an order of magnitude smaller than in the laminar case. We derive expressions to calculate impact probabilities as a function of dust and planetesimal size and turbulent intensity

    Hydrogen-Helium Mixtures in the Interiors of Giant Planets

    Full text link
    Equilibrium properties of hydrogen-helium mixtures under conditions similar to the interior of giant gas planets are studied by means of first principle density functional molecular dynamics simulations. We investigate the molecular and atomic fluid phase of hydrogen with and without the presence of helium for densities between ρ=0.19\rho=0.19 g cm3^{-3} and ρ=0.66\rho=0.66 g cm3^{-3} and temperatures from T=500T=500 K to T=8000KT=8000 {K}. Helium has a crucial influence on the ionic and electronic structure of the liquid. Hydrogen molecule bonds are shortened as well as strengthened which leads to more stable hydrogen molecules compared to pure hydrogen for the same thermodynamic conditions. The {\it ab initio} treatment of the mixture enables us to investigate the validity of the widely used linear mixing approximation. We find deviations of up to 8% in energy and volume from linear mixing at constant pressure in the region of molecular dissociation.Comment: 13 pages, 18 figures, submitted to PR

    The vibrational dynamics of vitreous silica: Classical force fields vs. first-principles

    Full text link
    We compare the vibrational properties of model SiO_2 glasses generated by molecular-dynamics simulations using the effective force field of van Beest et al. (BKS) with those obtained when the BKS structure is relaxed using an ab initio calculation in the framework of the density functional theory. We find that this relaxation significantly improves the agreement of the density of states with the experimental result. For frequencies between 14 and 26 THz the nature of the vibrational modes as determined from the BKS model is very different from the one from the ab initio calculation, showing that the interpretation of the vibrational spectra in terms of calculations using effective potentials can be very misleading.Comment: 7 pages of Latex, 4 figure
    corecore