14,886 research outputs found
Infinite Communication Complexity
Suppose that Alice and Bob are given each an infinite string, and they want
to decide whether their two strings are in a given relation. How much
communication do they need? How can communication be even defined and measured
for infinite strings? In this article, we propose a formalism for a notion of
infinite communication complexity, prove that it satisfies some natural
properties and coincides, for relevant applications, with the classical notion
of amortized communication complexity. More-over, an application is given for
tackling some conjecture about tilings and multidimensional sofic shifts.Comment: First Version. Written from the Computer Science PO
A compact topology for sand automata
In this paper, we exhibit a strong relation between the sand automata
configuration space and the cellular automata configuration space. This
relation induces a compact topology for sand automata, and a new context in
which sand automata are homeomorphic to cellular automata acting on a specific
subshift. We show that the existing topological results for sand automata,
including the Hedlund-like representation theorem, still hold. In this context,
we give a characterization of the cellular automata which are sand automata,
and study some dynamical behaviors such as equicontinuity. Furthermore, we deal
with the nilpotency. We show that the classical definition is not meaningful
for sand automata. Then, we introduce a suitable new notion of nilpotency for
sand automata. Finally, we prove that this simple dynamical behavior is
undecidable
Ultimate Traces of Cellular Automata
A cellular automaton (CA) is a parallel synchronous computing model, which
consists in a juxtaposition of finite automata (cells) whose state evolves
according to that of their neighbors. Its trace is the set of infinite words
representing the sequence of states taken by some particular cell. In this
paper we study the ultimate trace of CA and partial CA (a CA restricted to a
particular subshift). The ultimate trace is the trace observed after a long
time run of the CA. We give sufficient conditions for a set of infinite words
to be the trace of some CA and prove the undecidability of all properties over
traces that are stable by ultimate coincidence.Comment: 12 pages + 5 of appendix conference STACS'1
Two-Way Automata Making Choices Only at the Endmarkers
The question of the state-size cost for simulation of two-way
nondeterministic automata (2NFAs) by two-way deterministic automata (2DFAs) was
raised in 1978 and, despite many attempts, it is still open. Subsequently, the
problem was attacked by restricting the power of 2DFAs (e.g., using a
restricted input head movement) to the degree for which it was already possible
to derive some exponential gaps between the weaker model and the standard
2NFAs. Here we use an opposite approach, increasing the power of 2DFAs to the
degree for which it is still possible to obtain a subexponential conversion
from the stronger model to the standard 2DFAs. In particular, it turns out that
subexponential conversion is possible for two-way automata that make
nondeterministic choices only when the input head scans one of the input tape
endmarkers. However, there is no restriction on the input head movement. This
implies that an exponential gap between 2NFAs and 2DFAs can be obtained only
for unrestricted 2NFAs using capabilities beyond the proposed new model. As an
additional bonus, conversion into a machine for the complement of the original
language is polynomial in this model. The same holds for making such machines
self-verifying, halting, or unambiguous. Finally, any superpolynomial lower
bound for the simulation of such machines by standard 2DFAs would imply LNL.
In the same way, the alternating version of these machines is related to L =?
NL =? P, the classical computational complexity problems.Comment: 23 page
Complementary Speckle Patterns : deterministic interchange of intrinsic vortices and maxima through Scattering Media
Intensity minima and maxima of speckle patterns obtained behind a diffuser
are experimentally interchanged by applying a spiral phase delay of charge to the impinging coherent beam. This transform arises from the intuitive
expectation that a tightly focused beam is so-changed into a vortex beam and
vice-versa. The statistics of extrema locations and the intensity distribution
of the so-generated "complementary" patterns are characterized by numerical
simulations. It is demonstrated experimentally that the incoherent
superposition of the three "complementary speckle patterns" yield a synthetic
speckle grain size enlarged by a factor . A cyclic permutation of
optical vortices and maxima is unexpectedly observed and discussed.Comment: 9 pages, 9 figure
Sofic Trace of a Cellular Automaton
The trace subshift of a cellular automaton is the subshift of all possible
columns that may appear in a space-time diagram, ie the infinite sequence of
states of a particular cell of a configuration; in the language of symbolic
dynamics one says that it is a factor system. In this paper we study conditions
for a sofic subshift to be the trace of a cellular automaton.Comment: 10 pages + 6 for included proof
Recommended from our members
Comparison of max-plus automata and joint spectral radius of tropical matrices
Weighted automata over the max-plus semiring S are closely related to finitely generated semigroups of matrices over S. In this paper, we use results in automata theory to study two quantities associated with sets of matrices: the joint spectral radius and the ultimate rank. We prove that these two quantities are not computable over the tropical semiring, i.e. there is no algorithm that takes as input a finite set of matrices M and provides as output the joint spectral radius (resp. the ultimate rank) of M. On the other hand, we prove that the joint spectral radius is nevertheless approximable and we exhibit restricted cases in which the joint spectral radius and the ultimate rank are computable. To reach this aim, we study the problem of comparing functions computed by weighted automata over the tropical semiring. This problem is known to be undecidable and we prove that it remains undecidable in some specific subclasses of automata
Revisiting the Rice Theorem of Cellular Automata
A cellular automaton is a parallel synchronous computing model, which
consists in a juxtaposition of finite automata whose state evolves according to
that of their neighbors. It induces a dynamical system on the set of
configurations, i.e. the infinite sequences of cell states. The limit set of
the cellular automaton is the set of configurations which can be reached
arbitrarily late in the evolution.
In this paper, we prove that all properties of limit sets of cellular
automata with binary-state cells are undecidable, except surjectivity. This is
a refinement of the classical "Rice Theorem" that Kari proved on cellular
automata with arbitrary state sets.Comment: 12 pages conference STACS'1
Denis Moreau, Les voies du salut: un essai philosophique [The Ways of Salvation: A Philosophical Essay]. Bayard, 2010
- …
