85 research outputs found

    The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics

    Get PDF
    Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research

    Factors that influence the quality of metabolomics data in in vitro cell toxicity studies: a systematic survey

    Get PDF
    REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is a global strategy and regulation policy of the EU that aims to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. It entered into force on 1st June 2007 (EC 1907/2006). REACH and EU policies plead for the use of robust high-throughput 'omic' techniques for the in vitro investigation of the toxicity of chemicals that can provide an estimation of their hazards as well as information regarding the underlying mechanisms of toxicity. In agreement with the 3R's principles, cultured cells are nowadays widely used for this purpose, where metabolomics can provide a real-time picture of the metabolic effects caused by exposure of cells to xenobiotics, enabling the estimations about their toxicological hazards. High quality and robust metabolomics data sets are essential for precise and accurate hazard predictions. Currently, the acquisition of consistent and representative metabolomic data is hampered by experimental drawbacks that hinder reproducibility and difficult robust hazard interpretation. Using the differentiated human liver HepG2 cells as model system, and incubating with hepatotoxic (acetaminophen and valproic acid) and non-hepatotoxic compounds (citric acid), we evaluated in-depth the impact of several key experimental factors (namely, cell passage, processing day and storage time, and compound treatment) and instrumental factors (batch effect) on the outcome of an UPLC-MS metabolomic analysis data set. Results showed that processing day and storage time had a significant impact on the retrieved cell's metabolome, while the effect of cell passage was minor. Meta-analysis of results from pathway analysis showed that batch effect corrections and quality control (QC) measures are critical to enable consistent and meaningful estimations of the effects caused by compounds on cells. The quantitative analysis of the changes in metabolic pathways upon bioactive compound treatment remained consistent despite the concurrent causes of metabolomic data variation. Thus, upon appropriate data retrieval and correction and by an innovative metabolic pathway analysis, the metabolic alteration predictions remained conclusive despite the acknowledged sources of variability

    Urinary metabolic signatures detect recurrences in non-muscle invasive bladder cancer

    Get PDF
    Patients with non-muscle invasive bladder cancer (NMIBC) undergo lifelong monitoring based on repeated cystoscopy and urinary cytology due to the high recurrence rate of this tumor. Nevertheless, these techniques have some drawbacks, namely, low accuracy in detection of low-grade tumors, omission of pre-neoplastic lesions and carcinomas in situ (CIS), invasiveness, and high costs. This work aims to identify a urinary metabolomic signature of recurrence by proton Nuclear Magnetic Resonance (1H NMR) spectroscopy for the follow-up of NMIBC patients. To do this, changes in the urinary metabolome before and after transurethral resection (TUR) of tumors are analyzed and a Partial Least Square Discriminant Analysis (PLS-DA) model is developed. The usefulness of this discriminant model for the detection of tumor recurrences is assessed using a cohort of patients undergoing monitoring. The trajectories of the metabolomic profile in the follow-up period provide a negative predictive value of 92.7% in the sample classification. Pathway analyses show taurine, alanine, aspartate, glutamate, and phenylalanine perturbed metabolism associated with NMIBC. These results highlight the potential of 1H NMR metabolomics to detect bladder cancer (BC) recurrences through a non-invasive approach

    Analysis of longitudinal metabolomic data using multivariate curve resolution-alternating least squares and pathway analysis

    Get PDF
    Extraction of meaningful biological information from longitudinal metabolomic studies is a major challenge and typically involves multivariate analysis and dimensional reduction methods for data visualization such as Principal Component Analysis or Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Besides, a variety of computational tools have been developed to identify changes in metabolic pathways including functional analysis and pathway analysis. In this work, the joint analysis of results from MCR-ALS and metabolic pathway analysis is proposed to facilitate the interpretation of dynamic changes in longitudinal metabolomic data. The strategy is based on the use of MCR-ALS to remove unstructured random variation in the raw data, thus facilitating the interpretation of dynamic changes observed by metabolic pathway analysis over time. A simulated data set representing dynamic longitudinal changes in the intensities of a subset of metabolites from three metabolic pathways was initially used to test the applicability of MCR-ALS to support pathway analysis for detecting pathway perturbations. Then, the strategy is applied to real data acquired for the analysis of changes during CD8+ T cell activation. Results obtained show that MCR-ALS facilitates the interpretation of longitudinal metabolomic profiles in multivariate data sets by identifying metabolic pathways associated with each detected dynamic component

    The effect of Holder pasteurization on the lipid and metabolite composition of human milk

    Get PDF
    Human milk (HM) is the gold standard for newborn nutrition. When own mother's milk is not sufficiently available, pasteurized donor human milk becomes a valuable alternative. In this study we analyzed the impact of Holder pasteurization (HoP) on the metabolic and lipidomic composition of HM. Metabolomic and lipidomic profiles of twelve paired HM samples were analysed before and after HoP by liquid chromatography-mass spectrometry (MS) and gas chromatography-MS. Lipidomic analysis enabled the annotation of 786 features in HM out of which 289 were significantly altered upon pasteurization. Fatty acid analysis showed a significant decrease of 22 out of 29 detectable fatty acids. The observed changes were associated to five metabolic pathways. Lipid ontology enrichment analysis provided insight into the effect of pasteurization on physical and chemical properties, cellular components, and functions. Future research should focus on nutritional and/or developmental consequences of these changes

    Evaluation of the effect of chance correlations on variable selection using Partial Least Squares -Discriminant Analysis

    Full text link
    Variable subset selection is often mandatory in high throughput metabolomics and proteomics. However, depending on the variable to sample ratio there is a significant susceptibility of variable selection towards chance correlations. The evaluation of the predictive capabilities of PLSDA models estimated by cross-validation after feature selection provides overly optimistic results if the selection is performed on the entire set and no external validation set is available. In this work, a simulation of the statistical null hypothesis is proposed to test whether the discrimination capability of a PLSDA model after variable selection estimated by cross-validation is statistically higher than that attributed to the presence of chance correlations in the original data set. Statistical significance of PLSDA CV-figures of merit obtained after variable selection is expressed by means of p-values calculated by using a permutation test that included the variable selection step. The reliability of the approach is evaluated using two variable selection methods on experimental and simulated data sets with and without induced class differences. The proposed approach can be considered as a useful tool when no external validation set is available and provides a straightforward way to evaluate differences between variable selection methods.JE and JK acknowledge the "Sara Borrell" Grants (CD11/00154 and CD12/00667) from the Instituto Carlos III (Ministry of Economy and Competitiveness). DPG acknowledge the "V Segles" Grant provided by the University of Valencia to carry out this study. MV acknowledges the FISPI11/0313 Grant from the Instituto Carlos III (Ministry of Economy and Competitiveness). AF acknowledges the DPI2011-28112-C04-02 Grant from Spanish Ministry of Science and Innovation (MICINN). GQ acknowledges the financial support from the Spanish Ministry of Economy and Competitivity (SAF2012-39948).Kuligowski, J.; Pérez Guaita, D.; Escobar, J.; Guardia, MDL.; Vento, M.; Ferrer Riquelme, AJ.; Quintás, G. (2013). Evaluation of the effect of chance correlations on variable selection using Partial Least Squares -Discriminant Analysis. Talanta. 116:835-840. https://doi.org/10.1016/j.talanta.2013.07.048S83584011
    • …
    corecore