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A B S T R A C T   

Extraction of meaningful biological information from longitudinal metabolomic studies is a major challenge and 
typically involves multivariate analysis and dimensional reduction methods for data visualization such as 
Principal Component Analysis or Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Besides, a 
variety of computational tools have been developed to identify changes in metabolic pathways including func-
tional analysis and pathway analysis. In this work, the joint analysis of results from MCR-ALS and metabolic 
pathway analysis is proposed to facilitate the interpretation of dynamic changes in longitudinal metabolomic 
data. The strategy is based on the use of MCR-ALS to remove unstructured random variation in the raw data, thus 
facilitating the interpretation of dynamic changes observed by metabolic pathway analysis over time. A simu-
lated data set representing dynamic longitudinal changes in the intensities of a subset of metabolites from three 
metabolic pathways was initially used to test the applicability of MCR-ALS to support pathway analysis for 
detecting pathway perturbations. Then, the strategy is applied to real data acquired for the analysis of changes 
during CD8+ T cell activation. Results obtained show that MCR-ALS facilitates the interpretation of longitudinal 
metabolomic profiles in multivariate data sets by identifying metabolic pathways associated with each detected 
dynamic component.   

1. Introduction 

Longitudinal metabolomics involves the analysis of biological sam-
ples over time, where the same matrix of measurements is repeated at 
different times to monitor, for example, the effect of an external inter-
vention such as drug, exercise, or the evolution of a disease or a given 
treatment on a given population. Longitudinal studies are critical for the 
understanding of the evolution of biological processes and provide 
major advantages described elsewhere [1]. However, the extraction of 
useful information from metabolomic data to unravel the biochemical 
events in longitudinal studies is challenging. Data acquired over time is 
often arranged as a two-dimensional matrix in which each row corre-
sponds to a given time point and each column to a metabolic feature. 

The number of detected variables in metabolomic studies largely ex-
ceeds the number of samples, variables are usually correlated, and the 
biological information is typically contained in a fraction of the vari-
ables. Furthermore, data acquired from the analysis of samples collected 
in longitudinal studies typically show autocorrelations. Nevertheless, 
data analysis is frequently initiated by using exploratory methods such 
as Principal Component Analysis (PCA) for dimensional reduction and 
data visualization, or Partial Least Squares (PLS) for discriminant anal-
ysis [2]. 

PCA is arguably the most widely used method in metabolomics for 
the unsupervised analysis of multivariate data sets. PCA reduces the 
dimensionality of the experimental data matrix D (n x j), where n is the 
number of metabolic profiles and j the number of metabolic features, to 
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a lower number of independent variables that take the interdependence 
of the original variables into account through linear functions which 
successively maximize variance and are uncorrelated with each other 
[3–5]. Dimensionality reduction facilitates the analysis of the correla-
tions among variables and data visualization to identify the underlying 
structure. In the case of longitudinal studies, the scores of the PCs can be 
correlated with the “longitudinal variable” (e.g., time) to identify pat-
terns of evolution of the metabolome. However, there is no guarantee 
that the directions of maximum variance in the original multivariate 
space contain biologically relevant information. Furthermore, a single 
PC does not always capture biological variation of interest and the in-
formation is contained in the combination of several PCs, making 
difficult the interpretation. Low variance components might contain 
biological variation of interest, while components with large variances 
might describe non-biological sources of variance [6]. The PCA loadings 
describe how much each original variable contributes to a particular 
principal component, and whether the variable and the principal 
component are positively or negatively correlated. Another algorithm 
used in the analysis of dynamic systems is Multivariate Curve Resolution 
– Alternating Least Squares (MCR-ALS). MCR-ALS models multivariate 
data by considering a set of components whose concentrations evolve at 
different rates and have different characteristic metabolic features. 
MCR-ALS iteratively solves the bilinear equation D = CST + E, where the 
data matrix D (n x j) is decomposed in a pure variable matrix S (j x i) and 
a concentration matrix C (n x i), and E (n x j) corresponds to unexplained 
data variance, where i is the selected number of MCR-ALS components. 
Matrix C describes the evolution of the concentration of metabolites as a 
function of time, and S represents metabolic profiles that are jointly 
regulated in the biological samples. The iterative ALS algorithm used to 
solve the bilinear equation calculated at each iteration provides esti-
mates of C and S by minimizing the residual unexplained variance E, 
until a convergence criterion is met. The optimization requires the initial 
selection of the number of components (i) and the use of initial estimates 
of C or S, that can be obtained using different methods such as 
SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) 
[7], evolving factor analysis (EFA) [8], or pure components. MCR 
methods suffer from non-uniqueness of their results, and there are three 
types of ambiguities in MCR methods: permutation, intensity and rota-
tion ambiguities [9]. The application of constrains that are both math-
ematically tractable and physically explicable such as unimodality in the 
concentration profiles, or non-negativity in C and/or S, improves the 
accuracy and interpretability of the retrieved spectra and concentration 
profiles and can partly overcome the ambiguities inherent to the factor 
analysis decomposition [10]. Furthermore, selectivity or local rank 
constraints can be used when some species are not present in certain 
samples to improve the estimation of the C profiles during the iterations 
[11]. As MCR-ALS was initially developed and has been widely applied 
to resolve optical spectra of chemical mixtures, matrices S and C are 
commonly known as the “spectral” and “concentration” matrices. 
Although in this study the matrix S refers to a metabolic profile instead 
of a characteristic spectrum, we maintained the use of the standard 
expression ‘spectral matrix’ to facilitate the interpretation of the 
manuscript. 

MCR-ALS has been used for the analysis of metabolomic data in the 
compression and pre-processing of multivariate datasets generated by 
spectral and hyphenated techniques such as nuclear magnetic resonance 
(NMR) spectroscopy [12] liquid chromatography-mass spectrometry 
(LC-MS), gas chromatography-mass spectrometry (GC-MS) or 
MS-imaging (MSI) [13–15], as well as for modeling temporally designed 
NMR-based metabolomics data [2]. MCR-ALS has also been proposed for 
the identification of reliable components in metabolomics based on their 
reproducibility in repeated MCR-ALS calculations with the number of 
components changing for each iteration [16]. 

In parallel, pathway analysis is widely used to facilitate the biolog-
ical interpretation of changes observed over time in metabolomic data 
[17,18]. Over-representation analysis (ORA) [19] tests if a group of 

metabolites is represented more than expected by chance within a list of 
altered metabolites identified using e.g., univariate testing and a 
pre-defined cutoff based on p-values, to determine whether metabolites 
involved in a particular pathway are enriched compared to random hits. 
The mummichog algorithm [20] is also widely used for functional 
metabolic analysis to infer pathway activities from a ranked list of MS 
peaks identified by untargeted metabolomics. It starts with the putative 
annotation of LC-MS peaks identified by their mass-to-charge ratio (m/z) 
or m/z and retention time, considering different adducts and polarities. 
Then, the annotated features are mapped onto pathway libraries (e.g., 
Kyoto Encyclopedia of Genes and Genomes, KEGG) for pathway activity 
prediction using a user-selected m/z accuracy [18]. The algorithm im-
plements an ORA method to evaluate pathway-level enrichment based 
on significant features selected using a pre-defined cutoff based on 
p-values [21]. In summary, pathway analysis typically relies on the 
identification of significant features using a univariate test (e.g., t-test) 
and a pre-defined p-value cutoff, or on their ranking. 

CD8+ T cells detect and kill infected or cancerous cells. When acti-
vated from their naïve state, T cells undergo a complex transition, 
including major metabolic reprogramming. The time-dependent tran-
sition from naïve to effector T cells has been recently studied in vitro 
using a combination of two flow injection analysis (FIA) and three LC 
methods in combination with positive and negative high-resolution MS 
modes [22]. Results from univariate analysis, PCA, and supervised PLS 
indicated that, depending on the method, between 54% and 98% of 
measured metabolic features change in a time-dependent way. More-
over, results showed that the impact of the CD8+ T cell activation pro-
cess on the metabolome was not constant. For example, results obtained 
by PLS analysis of the polar metabolites measured by FIA ± using the 
time (h) as independent variable indicated that the major metabolic 
differences occurred in the first 48 h of CD8+ T cell activation. Likewise, 
time profiles of key metabolites for fatty acid oxidation (carnitine), 
glycolysis (lactic acid) and polyamine biosynthesis (arginine, spermi-
dine, ornithine and spermine) were markedly different. Carnitine con-
centrations showed a gradual decline over the first 60 h. Lactic acid 
concentrations increased during the first 48 h, reaching a plateau and 
showed a decline at 84 h. Arginine and ornithine concentrations 
decreased over the first 24 h, and spermidine and spermine increased at 
different relative rates over the first 36 h and 48 h, respectively. Besides, 
transient increases in cofactors S-adenosylmethionine (SAM) and 
methyl-thioadenosine (MTA) with maximum values at 36 and 48 h, 
respectively, were found. PCA scores plots of lipid data sets indicated 
again that the major changes in the lipid composition occurred in the 
first 48 h of the experiment, and that the concentrations of membrane 
lipids such as phosphatidylethanolamines (PE), lysophosphatidylcho-
lines (LPC), and lysophosphatidylethanolamines (LPE) increased tran-
siently between 24 and 72 h post-activation before returning to values 
similar to pre-activation. These results indicate the presence of simul-
taneous asynchronous metabolic programming processes that impact 
the concentrations of the metabolites. 

The aim of this work is to demonstrate the utility of using MCR-ALS 
for the analysis of metabolomic data derived from longitudinal studies to 
facilitate the interpretation of observed changes through metabolic 
pathway analysis. A simulated data set representing longitudinal 
changes in the concentrations of a set of metabolites from three meta-
bolic pathways was initially used to test the applicability of MCR-ALS to 
support pathway analysis in the detection of pathway perturbations. 
Then, the strategy was used in real data acquired during an in vitro study 
focused on CD8+ T cell activation. 

Results obtained in simulated and real data show that the joint 
analysis of results from metabolic pathway analysis and MCR-ALS 
facilitate the interpretation of changes in dynamic metabolomic pro-
files, and the identification of metabolic pathways associated. 
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2. Materials and methods 

2.1. Simulated data set 

A data set was initially built as model example simulating three 
replicate longitudinal experiments. Accordingly, three Xi (20 x 469) 
matrices (i = [1,2,3]) of normally distributed random numbers with a 
relative standard deviation of 0.15% were built, where each row rep-
resented a data point (t = [1, 2, …, 20]) and each column a metabolite 
included in the following nine KEGG pathways: Tryptophan metabolism 
(map00380, 84 metabolites), Phenylalanine metabolism (map00360, 47 
metabolites), Steroid hormone biosynthesis (map00140, 99 metabo-
lites), Glutathione metabolism (map00480, 29 metabolites), Vitamin B6 
metabolism (map00750, 29 metabolites), Cyanoamino acid metabolism 
(map00460, 41 metabolites), Thiamine metabolism (map00730, 20 
metabolites), Glyoxylate and dicarboxylate metabolism (map00630, 46 
metabolites) and Arachidonic acid metabolism (map00590, 74 metab-
olites). Then, the intensities of 30 metabolites included in the Trypto-
phan, the Phenylalanine, and the Glyoxate and dicarboxylate 
metabolisms were modified to show a dynamic profile described by the 
functions shown in Fig. 1A in each simulated longitudinal experiment 
Xi. The 10 metabolites affected by each simulated effect were: Formyl-N- 
acetyl-5-methoxykynurenamine, Formyl-5-hydroxykynurenamine, 5- 
Hydroxy-N-formylkynurenine, 5-Hydroxykynurenine, 5-Hydroxykynur-
enamine, 4,6-Dihydroxyquinoline, 4-(2-Amino-5-hydroxyphenyl)-2,4- 
dioxobutanoate, 6-Hydroxykynurenic acid, Anthranilic acid, and 

Formylanthranilate in the Tryptophan metabolism (effect 1); L-Gluta-
mate, Glycine, Glutathione, Ascorbate, L-Ornithine, L-Cysteine, Gluta-
thione disulfide, Putrescine, Spermidine, and γ-L-Glutamyl-L-cysteine in 
the Glutathione metabolism (effect 2); and 2-Oxoglutarate, Acetate, 
Oxaloacetate, Glyoxylate, Formate, Propanoyl-CoA, Butanoyl-CoA, (S)- 
Malate, Citrate, and Glycolate in the Glyoxate and dicarboxylate meta-
bolism (effect 3). 

An augmented data matrix Xs (60 x 469) = [X1, X2, X3] was then 
created by row-wise matrix concatenation. In this simulated set of lon-
gitudinal experiments, using as reference the metabolic concentrations 
at t = 1, six metabolic pathways were labeled as non-perturbed 
(map00140, map00480, map00750, map00460, map00730, 
map00590), and three metabolic pathways (map00380, map00360, and 
map00630) were identified as perturbed following specific time profiles 
shown in Fig. 1B. Then, a second matrix Xsn (60 x 469) was built by 
adding random normally distributed noise to Xs with a standard devi-
ation of 0.3 (see Fig. 1C). Thinking of the Student’s t-test in terms of 
signal to noise ratio, in this simulation the signal would be the difference 
between the mean of two samples (i.e., the difference of mean values of a 
given metabolite at t = 1 and t = i (i = [2, 3, …, 20]). Thus, increasing 
the width of the distributions by adding noise in Xsn makes the differ-
ence in means less likely to be significant and more sensitive to chance 
variation, affecting the power of pathway analysis to detect perturbed 
pathways. 

Fig. 1. Simulated data set. Intensities of the three artificial effects (A). Intensities of the set of variables as a function of time in the simulated data with low (Xs) (B) 
and high (Xsn) noise levels (C), and in the MCR-ALS reconstructed CST matrix (D). Note: In B, C, and D, variables modified by effects 1 (left), 2 (center), or 3 (right) 
were highlighted in separate plots for a better visualization. 
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2.2. Metabolomic data set and clean-up 

A complete description of the data set can be found elsewhere [22]. 
Briefly, CD8+ T cells were activated in vitro and intra- and extracellular 
metabolites were extracted every 12 h for 4 days in total. The study 
involved sample collection at 9 time points (at 0, 12, 24, 36, 48, 60, 72, 
84, and 96 h) performed by triplicate and their analysis using comple-
mentary analytical methodologies: FIA – MS using positive and negative 
electrospray ionization (ESI+/− ), hydrophilic interaction liquid 
chromatography-quadrupole time of flight MS (HILIC-QTOF-MS) using 
ESI-, reversed phase LC-QTOF-MS using ESI+, and LC-QTOF-MS using 
ESI+/− for lipid analysis. This strategy enabled the detection of a large 
number of features supporting a broad metabolite coverage: FIA-ESI 
(+)-MS: 1887 features; FIA-ESI(− )-MS: 2416 features; HILIC-ESI 
(− )-QTOF-MS: 1671 features; LC-ESI(+)-QTOF-MS: 1549 features; lip-
idomics LC-ESI(+)-QTOF-MS: 1819 features; and lipidomics LC-ESI 
(− )-QTOF-MS: 1745 features. An initial data clean-up was applied to 
identify and remove uninformative features. Accordingly, for each data 
sub-set, univariate t-tests were applied to compare the distributions of 
the intensities of each feature at each time point with respect to blank 
samples. Features for which the null hypothesis of equal means could be 
rejected (Student’s t-test, p-value<0.01) in, at least, three consecutive 
time points, were retained for further analysis. Thus, after clean-up data 
analysis included 2730 features distributed as FIA-ESI(+)-MS: 144; 
FIA-ESI(− )-MS: 201; HILIC-ESI(− )-QTOF-MS: 414; LC-ESI 
(+)-QTOF-MS: 309; lipidomics LC-ESI(+)-QTOF-MS: 943; and lip-
idomics LC-ESI(− )-QTOF-MS: 719. A mid-level data fusion strategy was 
used merging the six data sets to identify the most relevant metabolites 
and pathways altered during CD8+ T cell activation. 

2.3. Pathway and network analysis 

Pathway Analysis combined results from enrichment analysis with 
topology analysis to support the identification of relevant pathways in 
the simulated data sets [18]. For the analysis of metabolomic data 
collected during CD8+ T cell activation, functional metabolic analysis 
was used to extract biological information within relevant networks 
using the mummichog algorithm [20] with a common m/z accuracy of 10 
ppm for all data sets. p-values used as input for functional analysis were 
estimated from univariate t-tests from the comparison of the distribution 
of relative intensities between 0 h and each time point between 12 and 
96 h. Results from functional analysis were summarized using the 
p-values calculated from the enrichment analysis and the pathway 
impact value calculated from pathway topology analysis estimated using 
the mummichog algorithm. 

2.4. Software and statistics 

Functional analysis was carried out in MetaboAnalyst 5.0 [18] 
(http://www.metaboanalyst.ca) using the human KEGG pathway data-
base [23]. Student’s t-tests assessed the null hypothesis that the data of 
two groups (e.g., 0 h vs 96 h) came from independent, random samples 
with equal means with unknown and unequal variances at the 5% sig-
nificance level. PCA was carried out using autoscaled data, and 
MCR-ALS using the unscaled values. Data analysis was carried out in 
MATLAB 2021a (Mathworks Inc., Natick, MA, USA) using in-house 
written scripts, the PLS Toolbox 8.9 (Eigenvector Research Inc., 
Wenatchee, USA), and the MCR-ALS toolbox (https://mcrals.wordpress. 
com/download/mcr-als-2-0-toolbox/, accessed on October 1, 2021) 
[24]. 

The raw MS and pre-processed data [22] was downloaded from www 
.ebi.ac.uk/metabolights/MTBLS2145. 

3. Results and discussion 

3.1. Simulated data set 

To test the applicability of MCR-ALS and pathway analysis for 
identifying dynamic components and infer metabolic perturbations in 
longitudinal data, we first applied it to a simulated data set. Fig. 1A 
shows the simulated effects modifying the concentrations of three sub-
sets of ten metabolites included in the Tryptophan (effect 1), Phenylal-
anine (effect 2), and Glyoxate and dicarboxylate (effect 3) metabolisms. 
The intensities of the subsets of altered metabolites as a function of time 
in the simulated data with very low (Xs) and high noise levels (Xsn) are 
depicted in Fig. 1B and C, respectively. Pathway Analysis was carried 
out using as input a list of altered metabolites identified using univariate 
t-tests and pre-defined thresholds for fold change and p-values. In this 
analysis, metabolites were classified as altered at a given time point i if 
two conditions were observed: i) p-value<0.05 for a t-test comparing the 
distribution of intensities at t = i with that observed at t = 1 as reference, 
and ii) an absolute shift in the mean value > 0.2. Reference results from 
the analysis of Xs depicted in Fig. 2A, showed that, as expected, the 
simulated effects on subsets of metabolites of the three selected meta-
bolic pathways lead to statistically significant perturbations in those 
pathways, with minimum p-values and maximum impacts matching the 
position of the maxima of the effects. The Tryptophan pathway was only 
found altered between t = 4 and 6. In the case of Glyoxate and dicar-
boxylate metabolism, a slightly larger perturbation (i.e., larger -log10(p- 
values)) was observed between t = 10 and 16, due to the overlap with 
the Phenylalanine metabolism modified by the effect 2, and the 
Phenylalanine metabolism also showed larger -log10(p-values) between 
t = 4 and 8. No effect was observed (p-values>0.05, impact = 0) in the 
Glutathione and Steroid hormone biosynthesis pathways that were not 
modified by the effects. In the presence of a higher noise level (Xsn) the 
power to accurately infer pathways activities was reduced (see Fig. 2C). 
In the case of the Tryptophan pathway, where the simulated effect was 
less intense than in the case of the Phenylalanine (effect 2) and Glyox-
ylate and dicarboxylate (effect 3), it lead to the identification of a ‘false 
positive’. At t = 2 results from pathway analysis indicated a significant 
alteration (p-values<0.05) not observed in Xs (see Fig. 2B). Besides, the 
evolution of the impact was noisy and did not follow the trend observed 
in the data set used as reference (Xs). Results for the Phenylalanine 
metabolism in Xsn (Fig. 2C) showed ‘false negatives’ (p-value>0.05) 
between t = 14 and 17, in contrast to the statistically significant p-val-
ues<0.05 observed in Xs. Phenylalanine pathway impact values did not 
follow the trend observed in Xs, and impact values > 0 were found at t =
2 and 17. Results for the analysis of the Glyoxylate metabolism in Xsn, 
showed some differences compared to those found in Xs including un-
stable p-values at t > 10, and a large impact and low p-value at t = 9. 
Furthermore, the Steroid hormone biosynthesis pathway was found 
altered at t = 5. 

Then, the Xsn data set was analyzed by MCR-ALS. During MCR-ALS 
optimization, the model is fitted with a predefined number of compo-
nents using initial estimates of either the C or the S matrix. In this case, 
three components were selected from log10(eigenvalues) obtained from 
singular value decomposition (SVD) (see Fig. 3). The MCR-ALS initial 
concentration estimates (C) were obtained using the pure algorithm. 
This algorithm assumes that the data set includes variables related to a 
single spectral component. Alternative strategies such as the use of In-
dependent Component Analysis (ICA), or EFA could be used [25]. 
Fig. 4A shows the resolved concentration (i.e., C) profiles estimated by 
MCR-ALS after 51 iterations (96% variance explained (R2) at the opti-
mum) using unimodality (10% tolerance) in the concentration profiles 
of the three components as constraint. Besides, during ALS optimization, 
an equality constrain was applied in the concentration profile to fix the 
initial (i.e., basal state) concentration of the three components to zero. 
Data depicted showed that the three components had concentration 
peaks at t ~6, 10, and 15, respectively, matching the theoretical peak 
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maxima of the perturbations introduced, respectively. Fig. 4B shows the 
spectral profiles of the MCR-ALS components. Metabolites of Trypto-
phan, Phenylalanine, and Glyoxate and dicarboxylate modified by ef-
fects 1, 2, and 3 respectively (see Fig. 1A), showed values close to 1 in S, 
in agreement with the artificially introduced effects. Fig. 1D shows data 
reconstructed using the three low-order MCR-ALS components (i.e., D 
¼ CST). Data reconstruction led to a reduction in the noise levels 
measured as the root mean square value of the intensities of the set of 
non-altered metabolites, from 0.20 in Xsn to 0.04 in D. Furthermore, 
results depicted in Fig. 2C showed that in this case, the use of recon-
structed data D also provided an improve in the accuracy of pathway 
analysis. Estimated p-values and impacts matched more closely to those 
estimated in the reference data (Xs) in the three altered pathways, as 
well as in the unaltered Glutathione metabolism and Steroid hormone 

biosynthesis pathways, with no false positive or false negative perturbed 
time points. These results show that MCR-ALS can be used to identify 
and isolate dynamic sources of variation in the data set, thus facilitating 
downstream pathway analysis. MCR methods suffer from 
non-uniqueness of their results and instrumental noise propagates un-
certainty to the bilinear solutions. However, the analysis of the set of 
feasible profiles in the bilinear decomposition of the metabolic data as a 
function of instrumental noise can be analyzed using e.g., MCR-BANDS 
or N-BANDS as described elsewhere [26]. 

3.2. Metabolic dynamics of in vitro CD8+ T cell activation 

PCA was employed to identify dynamic components in the data set. 
Fig. 5A shows the PCA scores as a function of time of the first three PCs 
explaining 69% of the variance. PC1 and PC2 showed dynamic trends 
with maxima at 48 and 36 h, respectively. Then, functional metabolic 
network analysis was used to retrieve biological information within 
relevant networks using the mummichog algorithm, the set of 2730 
metabolic features with an m/z accuracy of 10 ppm, and the KEGG li-
brary of pathways [20]. Metabolic profiles from samples collected at t =
0 h were selected as reference and they were compared to those 
collected during T-cell activation over the following 8 time points. 
Fig. 6A shows the list of enriched pathways at each time point. In spite of 
the different strategies employed, results from PCA and functional 
analysis agreed with previously reported results showing that metabo-
lite concentrations changed in a time-dependent way. For example, in 
the original study [22], the separate analysis of FIA-ESI(±)-MS data 
indicated that the major metabolic differences occurred in the first 48 h 
of CD8+ T cell activation, in agreement with the large shift in the PC1 
scores in that time window (see Fig. 5A). Also, results from functional 
analysis in Fig. 6A show a larger number of altered pathways within the 
first 24 h of CD8+ T cell activation, and different patterns of altered 
pathways along the activation process. However, results obtained from 
functional analysis did not correlate with the scores obtained by PCA of 
the longitudinal data set. In this case, the analysis of the correlation 
between the outcome from functional analysis for each metabolic 
pathway and the PCA scores did not show any statistically significant 
(p-value<0.01) linear association (data not shown). 

Then, MCR-ALS was applied to the Tcell data set. The MCR-ALS 
model was fitted using concentration profiles obtained using the pure 
algorithm as initial concentration estimates. Fig. 5B shows the resolved 
concentration profiles estimated by MCR-ALS for three components after 
17 iterations (16% variance explained (R2) at the optimum) using 
unimodality (10% tolerance) in the concentration profiles as unique 
constraint. Data depicted show that the three components had concen-
tration peaks at t = 12, 48, and 48 h, respectively, with overlapping and 
markedly different profiles to those observed by PCA (see Fig. 5A). The 

Fig. 2. Results from pathway analysis using data t = 1 as reference and t-test for the identification of differential metabolites (p-values<0.05) in Xs (A), Xsn (B) and 
MCR-ALS reconstructed CST matrix (C). Results show the evolution of the significance (left) and impact (right) of five metabolic pathways. Tryptophan, Phenyl-
alanine and Glyoxylate and dicarboxylate pathways were altered by effects 1, 2, and 3 respectively. The Glutathione and Steroid hormone biosynthesis pathways 
were randomly simulated, and no alteration was expected at any time point. 

Fig. 3. log10(eigenvalues) obtained from the singular value decomposition 
(SVD) analysis of Xsn. 

I. Ten-Doménech et al.                                                                                                                                                                                                                         



Chemometrics and Intelligent Laboratory Systems 232 (2023) 104720

6

intensity of the first component decreased during the first 36 h, and then 
remained approximately stable until the end of the study. The second 
component increased over the first 48 h and then decreased, reaching a 

plateau at 60 h. The third component gradually increased its intensity 
the first 48 h and then decrease down to approximately the initial values 
after 72 h of T-cell differentiation. 

Fig. 4. MCR-ALS analysis of the simulated data set Xsn. Concentration (C, top) and spectral (S, bottom) profiles estimated by MCR-ALS after 51 iterations (96% 
variance explained (R2) at the optimum). Note: blue, orange and yellow horizontal bars in the bottom figure at intensity = − 0.5 indicate the variables affected by the 
first, second, and third simulated effects. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. A) PCA scores plot for the first three principal components, from the analysis of pre-processed data obtained during CD8+ T cell activation using six 
complementary analytical platforms. B) MCR-ALS concentration profiles obtained after 17 iterations. 
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Then, functional metabolic analysis was used to extract biological 
information as described above. Using the MCR-ALS reconstructed 
metabolic profiles D = CST, samples collected at t = 0 h were compared 
to those collected during CD8+ T-cell activation over the following eight 
time points. Results in this case show a larger number of altered path-
ways within the first 24 h of CD8+ T cell activation than later, and 
different patterns of altered pathways along the activation process (see 
Fig. 6B), in agreement with results obtained from the analysis of the 
initial data matrix Tcell shown in Fig. 6A]. Moreover, results obtained 
from the analysis of the MCR-ALS reconstructed data D showed path-
ways displaying statistically significant (p-value<0.01) correlation with 
the concentration profiles obtained by MCR-ALS. In particular, five 
pathways (Aminoacyl-tRNA biosynthesis; Glycine, serine and threonine 
metabolism; Citrate cycle (TCA cycle); Cysteine and methionine meta-
bolism; and Pantothenate and CoA biosynthesis) showed positive sig-
nificant correlations with the median intensities of the first MCR-ALS 
component, and two pathways (Metabolism of xenobiotics by cyto-
chrome P450; and Tryptophan metabolism) were correlated with the 
third MCR-ALS component (see Fig. 7). 

4. Conclusions 

Results obtained using MCR-ALS in simulated and real data showed 
the utility of this approach for the interpretation of metabolic changes 

MS-based longitudinal data sets. Furthermore, it is a non-parametrical 
approach that only assumes a linear relationship between the concen-
tration and spectral profiles of a limited number of components. How-
ever, the type of initial estimates might influence the MCR-ALS 
factorization depending on the data structure. The identification of 
metabolic pathways associated with each detected dynamic component 
can support the understanding of overlapping asynchronous metabolic 
programming processes in a biological context. 
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