38 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Cell-Based Antioxidant Properties and Synergistic Effects of Natural Plant and Algal Extracts Pre and Post Intestinal Barrier Transport

    No full text
    In this work, both direct and indirect cell-based antioxidant profiles were established for 27 plant extracts and 1 algal extract. To evaluate the direct antioxidant effects, fluorescent AOP1 cell assay was utilized, which measures the ability of different samples to neutralize intracellular free radicals produced by a cell-based photo-induction process. As the intestinal barrier is the first cell line crossed by the product, dose response curves obtained from Caco-2 cells were used to establish EC50 values for 26 out of the 28 natural extracts. Among them, 11 extracts from Vitis, Hamamelis, Syzygium, Helichrysum, Ilex and Ribes genera showed remarkable EC50s in the range of 10 &micro;g/mL. In addition to this, a synergistic effect was found when combinations of the most potent extracts (S. aromaticum, H. italicum, H. virginiana, V. vinifera) were utilized compared to extracts alone. Indirect antioxidant activities (i.e., the ability of cells to trigger antioxidant defenses) were studied using the ARE/Nrf2 luminescence reporter-gene assay in HepG2 cells, as liver is the first organ crossed by an edible ingredient once it enters in the bloodstream. Twelve extracts were subjected to an intestinal epithelial barrier passage in order to partially mimic intestinal absorption and show whether basolateral compartments could maintain direct or indirect antioxidant properties. Using postepithelial barrier samples and HepG2 cells as a target model, we demonstrate that indirect antioxidant activities are maintained for three extracts, S. aromaticum, H. virginiana and H. italicum. Our experimental work also confirms the synergistic effects of combinations of post-intestinal barrier compartments issued from apical treatment with these three extracts. By combining cell-based assays together with an intestinal absorption process, this study demonstrates the power of cell systems to address the issue of antioxidant effects in humans

    Innovative process for submicronic Cu particle deposition onto various substrates

    No full text
    The efficiency of composite materials heavily relies on the ability of assembled materials to form strong interfaces, for allowing a good transfer of properties. High chemical affinity between the assembled materials is beneficial to the composite, whereas the assembly of materials with a weak mutual affinity is more difficult. When the interface is known to be non-cohesive, additional elements are commonly used to bond the matrix to the reinforcements. In the case of copper and carbon bonding, boron and chromium layers are frequently used [1], [2] and [3]. These additional bonding layers can, however, affect the properties of the composite, degrading for instance its mechanical or thermal properties. We report here an innovative process enabling the selective deposition of copper nanoparticles on substrates of various types (carbon fibers (CF) or nanofibers (CNF), diamond particles, silicon (Si) wafer, alumina plate) and shapes (1D, 2D, 3D). The deposition process involves a phosphate reagent used to functionalize the substrates. Cu nanoparticles deposit precisely onto the functionalized sites of the substrate and can then be used to bond the matrix to reinforcements with weak chemical affinity, such as copper with carbon fibers or diamond particles, therefore avoiding the use of interlayers which might be detrimental to the assembly properties. From a broader perspective, we anticipate that the method described here could enable the deposition of particles of many materials (Cu, Mn, Ti, Ni) onto substrates of various shapes and dimensions, creating bonding layers between materials of low chemical affinity and making easier their assembly without degrading its properties

    [Diagnosis and treatment of soft-tissue tumors]

    No full text
    International audienceThe diagnostic and therapeutic management of patients with soft-tissue tumors would be similar to the approach used for bone tumors if it were not for one crucial factor: the absolute necessity to recognize a sarcoma. The predominant features are the size of the tumor and its superficial or deep localization. If the tumor is small and superficial, biopsy can be associated with immediate resection without risk of dissemination to the deep tissues: this is the biopsy-resection approach. If the tumor is deep or superficial but large sized, search for locoregional spread with MRI is necessary before undertaking any surgical procedure. MRI can help guide the biopsy and plan resection if the tumor is a sarcoma. A first biopsy is necessary to establish the histological diagnosis and elaborate the therapeutic strategy. Samples should be sent immediately to the pathology lab which should examine sterile fresh tissue. Experience has demonstrated that proper rules for diagnosis and treatment are not necessarily applied initially in approximately one-fourth of all subjects with a malignant soft-tissue tumor. Besides the medical problems caused by this situation, the patient loses a chance for cure. When the tumor is a sarcoma, surgery is the basis of treatment. Complementary radiation therapy may be necessary, particularly for high-grade tumors or if the surgical margin was insufficient. Systemic or locoregional chemotherapy can also be used for high-grade or non-resectable tumors

    The role of controlled interfaces in the thermal management of copper-carbon composites

    No full text
    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers, carbon nano fibers and diamond-reinforced copper matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon composite films by powder metallurgy and tape casting and hot pressing; these films promise to be efficient heat-dissipation layers for power electronic modules. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between copper and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect. In this paper, a variety of methods that are system specific that achieve these goals are outlined

    Circulating ESR1 mutations at the end of aromatase inhibitor adjuvant treatment and after relapse in breast cancer patients

    No full text
    Abstract Background Detection of circulating ESR1 mutations is associated with acquired resistance to aromatase inhibitor (AI) in metastatic breast cancer. Until now, the presence of circulating ESR1 mutations at the end of adjuvant treatment by AI in early breast cancer had never been clearly established. In this context, the aim of the present study was to evaluate the circulating ESR1 mutation frequency at the end of adjuvant treatment and after relapse. Methods This monocentric retrospective study was based on available stored plasmas and included all early breast cancer patients who completed at least 2 years of AI adjuvant treatment and experienced a documented relapse after the end of their treatment. Circulating ESR1 mutations (D538G, Y537S/N/C) were assessed by droplet digital PCR in plasma samples taken at the end of adjuvant treatment, at time of relapse and at time of progression under first line metastatic treatment. Results A total of 42 patients were included, with a median adjuvant AI exposure of 60 months (range 41–85). No circulating ESR1 mutation was detectable at the end of AI adjuvant therapy. At first relapse, 5.3% of the patients (2/38) had a detectable circulating ESR1 mutation. At time of progression on first-line metastatic treatment, 33% of the patients (7/21) under AI had a detectable circulating ESR1 mutation compared to none of the patients under chemotherapy (0/10). The two patients with a detectable ESR1 mutation at relapse were treated by AI and had an increase of their variant allele fraction at time of progression on first-line metastatic treatment. Conclusions Circulating ESR1 mutation detection at the end of AI-based adjuvant treatment is not clinically useful. Circulating ESR1 mutation could be assessed as soon as first relapse to guide interventional studies

    Clinical relevance of circulating ESR1 mutations during endocrine therapy for advanced hormone-dependent endometrial carcinoma

    No full text
    Abstract Objective Endocrine therapy is frequently administered in patients with hormone dependent (HR+) metastatic endometrial cancer. ESR1 mutations have emerged as a key mechanism of aromatase inhibitor (AI) resistance in HR + metastatic breast cancer and can be monitored using circulating tumor DNA (ctDNA). The aim of this study was to explore the incidence and clinical relevance of circulating ESR1 mutations in patients treated by AI or megestrol acetate (M) for advanced endometrial carcinoma. Methodology This single-center retrospective study was performed at the Henri Becquerel Center (Rouen) and looked for circulating ESR1 gene mutations by droplet digital PCR (E380Q, L536R, Y537S, Y537N, Y537C, D538G, S463P) in patients with advanced HR + endometrial carcinoma treated between 2008 and 2020 for at least 30 days by AI or M. Analyses were performed before exposure and at progression/during endocrine therapy. Results Twenty-two patients were included: 13 were treated with AI, 12 of whom progressed; 9 patients were treated with M, 8 of whom progressed. 68.1% of the patients had low-grade endometrial carcinoma and 54.5% had received chemotherapy in the metastatic setting. The median duration of treatment was 152 days (min 47 – max 629) with AI and 155 days (min 91-max 1297) with M. Under AI, there was no ESR1 mutation at baseline, and one Y537C mutation at progression with a variant allele frequency (VAF) of 0.14%. Under M, one patient had a Y537C (VAF 0.2%) at baseline that disappeared during treatment. Another patient had a Y537S mutation emergence at progression after 91 days of treatment (VAF 1.83%). There was no significant difference between the circulating DNA concentration before and after hormone therapy (p = 0.16). Conclusion ESR1 mutations do not seem to be involved in the mechanisms of resistance to AI or M in HR+ endometrial cancer. The clinical relevance of their detection is not demonstrated

    Emotional distress and subjective impact of the disease in young women with breast cancer and their spouses

    No full text
    AIM: Evaluate the influence of emotional distress of young women with breast cancer and their spouses on their daily subjective experience of the disease, through application of the Actor-Partner Interdependence Model. PATIENTS & METHODS: A total of 112 women under 45 years of age were diagnosed with nonmetastatic breast cancer and their spouses answered self-reported measures of anxiety, depression and subjective experience of the disease and its treatment. RESULTS: The patient's emotional distress influenced more the subjective experience of her spouse than the spouse's emotional distress influenced the patient. The spouse's difficulties depended as much on his own distress level as on the patient's distress level. CONCLUSION: These data confirm the importance of implementing couple-focused interventions
    corecore