12 research outputs found

    Identification of the Arabidopsis calmodulin-dependent NAD+ kinase that sustains the elicitor-induced oxidative burst

    Get PDF
    International audience17 NADP(H) is an essential cofactor of multiple metabolic processes in all living organisms. In plants, 18 NADP(H) is required as the substrate of Ca 2+-dependent NADPH oxidases which catalyze a reactive 19 oxygen species burst in response to various stimuli. While NADP + production in plants has long been 20 known to involve a Calmodulin and Calcium (CaM)/Ca 2+-dependent NAD + kinase, the nature of the 21 enzyme catalyzing this activity has remained enigmatic, as well as its role in plant physiology. Here, 22 thanks to a combination of proteomics, biochemistry, molecular biology and in vivo studies, we have 23 identified an Arabidopsis protein that catalyzes NADP + production exclusively in the presence of 24 CaM/Ca 2+. This new enzyme (NADKc) has a CaM-binding peptide located in its N-terminal region and 25 displays peculiar biochemical properties as well as different domain organization compared to known 26 plant NAD + kinases. In response to a pathogen elicitor, activity of NADKc, which is associated with the 27 mitochondrial periphery, contributes to an increase in the cellular NADP + concentration and to the 28 amplification of the elicitor-induced oxidative burst. Based on a phylogenetic analysis and enzymatic 29 assays, we propose that the CaM/Ca 2+-dependent NAD + kinase activity found in photosynthetic 3

    Role of redox signaling by ascorbate in the performance of tomato fruit

    No full text
    Le changement de paradigme dans la biologie de l'oxydorĂ©duction (redox), considĂ©rant les expĂšces rĂ©actives de l’oxygĂšne (EROs) comme des signaux ajustĂ©s avec prĂ©cision modulant le mĂ©tabolisme des plantes, a mis en exergue les rĂ©seaux d'oxydorĂ©duction, en particulier chez les plantes oĂč de multiples sources d’EROs sont prĂ©sentes et associĂ©es Ă  de nombreux " systĂšmes de traitement des EROs " (Noctor et al., 2018). De plus, les principaux tampons redox (par exemple, l’acide ascorbique, le glutathion et les nuclĂ©otides Ă  pyridine) apparaissent clairement au premier plan des rĂ©gulations redox. La production d’EROs et les signaux redox qui en dĂ©coulent sont cruciaux pour prĂ©server l'harmonie du mĂ©tabolisme du fait de leur participation aux voies de signalisation adaptatives tout au long du dĂ©veloppement et en rĂ©ponse Ă  l'environnement. En parallĂšle, le dĂ©veloppement de la modĂ©lisation mathĂ©matique intĂ©grative a permis de nouvelles approches qui fournissent une description quantitative des flux mĂ©taboliques et de leur rĂ©gulations.Les progrĂšs dans la comprĂ©hension des signatures molĂ©culaires impliquĂ©es dans les rĂ©gulations redox, contrĂŽlant le compromis entre le dĂ©veloppement des fruits et les voies de stress, permettront de dĂ©finir de nouvelles stratĂ©gies pour une production et un stockage optimal des fruits (Beauvoit et al., 2018). Cependant, les connaissances sur la biologie de l'oxydorĂ©duction dans les fruits sont peu documentĂ©es. Bien que les principes provenant des tissus foliaires apportent une premiĂšre comprĂ©hension du mĂ©tabolisme redox, des Ă©tudes complĂštes fournissant des connaissances plus Ă©tendues sur les fruits restent manquantes.A cet Ă©gard, mon projet de thĂšse vise Ă  fournir la premiĂšre description quantitative du mĂ©tabolisme redox principal du fruit de tomate dans un contexte de dĂ©veloppement, tout en dĂ©veloppant et en mettant en Ɠuvre des protocoles permettant la quantification rapide des principaux composĂ©s redox. En outre, l'utilisation d'une approche de modĂ©lisation cinĂ©tique permettra de dĂ©chiffrer l'implication des flux redox dans le contrĂŽle de l'Ă©quilibre oxydorĂ©ducteur au cours du dĂ©veloppement du fruit.A cette fin :1.Une Ă©tude omique multi-Ă©chelle axĂ©e sur le mĂ©tabolisme du NAD au cours du dĂ©veloppement du fruit de la tomate a permis de fournir une meilleure vue de l'implication du mĂ©tabolisme du NAD dans les mĂ©tabolismes redox et central,2.Les principaux tampons redox et la capacitĂ© antioxydante totale ont Ă©tĂ© Ă©valuĂ©s Ă  l'aide d'analyses biochimiques ciblĂ©es du cycle ascorbate-glutathion, tandis que l'analyse LC-MS non ciblĂ©e a permis une comparaison globale des stades de dĂ©veloppement, en particulier vis Ă  vis des composĂ©s redox secondaires. D’autre part, des plantes mutantes enrichies en ascorbate ont Ă©tĂ© analysĂ©es pour Ă©tudier l'impact d'une augmentation de l'ASC sur le mĂ©tabolisme et le dĂ©veloppement du fruit de tomate,3.Les ensembles de donnĂ©es obtenus ont finalement Ă©tĂ© utilisĂ©es pour dĂ©velopper un modĂšle cinĂ©tique du cycle ASC-GSH, permettant l'Ă©tude des flux redox et de leur rĂ©gulation au cours du dĂ©veloppement du fruit de la tomate.D'autre part, j’ai participĂ© au dĂ©veloppement d'un plateau d'analyses redox mis en place au sein de la plateforme Bordeaux Metabolome, ce qui m’a permis de participer Ă  d'autres projets, tels que la caractĂ©risation d'une nouvelle NAD kinase (Dell'Aglio et al., 2019) et la caractĂ©risation de mutants enrichis en ASC (Deslous et al., 2021). J'ai Ă©galement eu l'occasion de participer Ă  la rĂ©daction de revues visant Ă  rassembler les connaissances Ă©parses disponibles sur le mĂ©tabolisme redox dans les fruits et en rĂ©ponse aux environnements extrĂȘmes (Decros et al., 2019 ; Dussarrat et al., 2021). Par ailleurs, les donnĂ©es prĂ©liminaires obtenues au cours de ce projet ont permis de concevoir de nouveaux projets plus ciblĂ©s sur l'implication du mĂ©tabolisme redox pendant la phase de mise Ă  fruit.The change of paradigm in redox biology, considering ROS as finely-tuned signals modulating plant metabolism, shed new light on redox networks, especially in plants where multiple sources of ROS are possible and associated with many “ROS processing systems” (Noctor et al., 2018), while major redox buffers (e.g. ASC, GSH and NAD) clearly appear at the forefront of oxidative regulations. ROS production and redox signals arising from are crucial to harmonious metabolism and participate in adaptive signalling pathways throughout development and in response to the environment. In parallel, the development of mathematical integrative modelling permitted by new approaches providing quantitative description through metabolic fluxes.Progress in understanding the molecular signatures involved in the redox regulations controlling the trade-off between fruit development and stress pathways will help to define novel strategies for optimal fruit production and storage (Beauvoit et al., 2018). However, knowledge on redox biology in fruit is sparsely documented, although principles originating from leaves tissues are valuable while waiting for comprehensive studies that provide more extensive knowledge on fruits.In this regard, my PhD project aims to provide the first quantitative description of core redox metabolism in a developmental context while developing and implementing protocols allowing the rapid quantification of major redox compounds. In addition, the use of an integrative modelling approach will allow deciphering the implication of redox flux in the control of redox balance during fruit development.For this purpose:1.A multiscale omics study focusing on NAD metabolism during tomato fruit development provides a better view of the implication of NAD metabolism in redox and central metabolism,2.Major redox buffers and total antioxidant capacity are assessed using targeted biochemical analyses of the ascorbate-glutathione cycle, while untargeted LC-MS analysis provides a global comparison of developmental stages, in particular for secondary redox compounds. Furthermore, mutant plants enriched in ascorbate have been analysed to study the impact of an increase in ASC on tomato fruit,3.The data sets obtained are finally used to develop a kinetic-based model of the ASC-GSH cycle, allowing the investigation of redox fluxes and their regulation during tomato fruit development.Besides, I participate in developing a redox platform to implement at the Bordeaux Metabolome Facility, allowing me to participate in some other projects, such as the characterisation of new NAD kinase (Dell’Aglio et al., 2019) and the characterisation of ASC-enriched mutants (Deslous et al., 2021). I also had the opportunity to participate in the writing of reviews aiming to bring together the scattered knowledge available on redox metabolism in fruits and in response to extreme environments (Decros et al., 2019 ; Dussarrat et al., 2021). Furthermore, the preliminary data obtained allowed the designing of new projects more focused on the involvement of redox metabolism during the fruit setting phase. To this end, different ASC mutant fruits have been analysed at several flower and young fruit stages

    Rîle de la signalisation redox par l’ascorbate dans la performance du fruit de tomate

    No full text
    The change of paradigm in redox biology, considering ROS as finely-tuned signals modulating plant metabolism, shed new light on redox networks, especially in plants where multiple sources of ROS are possible and associated with many “ROS processing systems” (Noctor et al., 2018), while major redox buffers (e.g. ASC, GSH and NAD) clearly appear at the forefront of oxidative regulations. ROS production and redox signals arising from are crucial to harmonious metabolism and participate in adaptive signalling pathways throughout development and in response to the environment. In parallel, the development of mathematical integrative modelling permitted by new approaches providing quantitative description through metabolic fluxes.Progress in understanding the molecular signatures involved in the redox regulations controlling the trade-off between fruit development and stress pathways will help to define novel strategies for optimal fruit production and storage (Beauvoit et al., 2018). However, knowledge on redox biology in fruit is sparsely documented, although principles originating from leaves tissues are valuable while waiting for comprehensive studies that provide more extensive knowledge on fruits.In this regard, my PhD project aims to provide the first quantitative description of core redox metabolism in a developmental context while developing and implementing protocols allowing the rapid quantification of major redox compounds. In addition, the use of an integrative modelling approach will allow deciphering the implication of redox flux in the control of redox balance during fruit development.For this purpose:1.A multiscale omics study focusing on NAD metabolism during tomato fruit development provides a better view of the implication of NAD metabolism in redox and central metabolism,2.Major redox buffers and total antioxidant capacity are assessed using targeted biochemical analyses of the ascorbate-glutathione cycle, while untargeted LC-MS analysis provides a global comparison of developmental stages, in particular for secondary redox compounds. Furthermore, mutant plants enriched in ascorbate have been analysed to study the impact of an increase in ASC on tomato fruit,3.The data sets obtained are finally used to develop a kinetic-based model of the ASC-GSH cycle, allowing the investigation of redox fluxes and their regulation during tomato fruit development.Besides, I participate in developing a redox platform to implement at the Bordeaux Metabolome Facility, allowing me to participate in some other projects, such as the characterisation of new NAD kinase (Dell’Aglio et al., 2019) and the characterisation of ASC-enriched mutants (Deslous et al., 2021). I also had the opportunity to participate in the writing of reviews aiming to bring together the scattered knowledge available on redox metabolism in fruits and in response to extreme environments (Decros et al., 2019 ; Dussarrat et al., 2021). Furthermore, the preliminary data obtained allowed the designing of new projects more focused on the involvement of redox metabolism during the fruit setting phase. To this end, different ASC mutant fruits have been analysed at several flower and young fruit stages.Le changement de paradigme dans la biologie de l'oxydorĂ©duction (redox), considĂ©rant les expĂšces rĂ©actives de l’oxygĂšne (EROs) comme des signaux ajustĂ©s avec prĂ©cision modulant le mĂ©tabolisme des plantes, a mis en exergue les rĂ©seaux d'oxydorĂ©duction, en particulier chez les plantes oĂč de multiples sources d’EROs sont prĂ©sentes et associĂ©es Ă  de nombreux " systĂšmes de traitement des EROs " (Noctor et al., 2018). De plus, les principaux tampons redox (par exemple, l’acide ascorbique, le glutathion et les nuclĂ©otides Ă  pyridine) apparaissent clairement au premier plan des rĂ©gulations redox. La production d’EROs et les signaux redox qui en dĂ©coulent sont cruciaux pour prĂ©server l'harmonie du mĂ©tabolisme du fait de leur participation aux voies de signalisation adaptatives tout au long du dĂ©veloppement et en rĂ©ponse Ă  l'environnement. En parallĂšle, le dĂ©veloppement de la modĂ©lisation mathĂ©matique intĂ©grative a permis de nouvelles approches qui fournissent une description quantitative des flux mĂ©taboliques et de leur rĂ©gulations.Les progrĂšs dans la comprĂ©hension des signatures molĂ©culaires impliquĂ©es dans les rĂ©gulations redox, contrĂŽlant le compromis entre le dĂ©veloppement des fruits et les voies de stress, permettront de dĂ©finir de nouvelles stratĂ©gies pour une production et un stockage optimal des fruits (Beauvoit et al., 2018). Cependant, les connaissances sur la biologie de l'oxydorĂ©duction dans les fruits sont peu documentĂ©es. Bien que les principes provenant des tissus foliaires apportent une premiĂšre comprĂ©hension du mĂ©tabolisme redox, des Ă©tudes complĂštes fournissant des connaissances plus Ă©tendues sur les fruits restent manquantes.A cet Ă©gard, mon projet de thĂšse vise Ă  fournir la premiĂšre description quantitative du mĂ©tabolisme redox principal du fruit de tomate dans un contexte de dĂ©veloppement, tout en dĂ©veloppant et en mettant en Ɠuvre des protocoles permettant la quantification rapide des principaux composĂ©s redox. En outre, l'utilisation d'une approche de modĂ©lisation cinĂ©tique permettra de dĂ©chiffrer l'implication des flux redox dans le contrĂŽle de l'Ă©quilibre oxydorĂ©ducteur au cours du dĂ©veloppement du fruit.A cette fin :1.Une Ă©tude omique multi-Ă©chelle axĂ©e sur le mĂ©tabolisme du NAD au cours du dĂ©veloppement du fruit de la tomate a permis de fournir une meilleure vue de l'implication du mĂ©tabolisme du NAD dans les mĂ©tabolismes redox et central,2.Les principaux tampons redox et la capacitĂ© antioxydante totale ont Ă©tĂ© Ă©valuĂ©s Ă  l'aide d'analyses biochimiques ciblĂ©es du cycle ascorbate-glutathion, tandis que l'analyse LC-MS non ciblĂ©e a permis une comparaison globale des stades de dĂ©veloppement, en particulier vis Ă  vis des composĂ©s redox secondaires. D’autre part, des plantes mutantes enrichies en ascorbate ont Ă©tĂ© analysĂ©es pour Ă©tudier l'impact d'une augmentation de l'ASC sur le mĂ©tabolisme et le dĂ©veloppement du fruit de tomate,3.Les ensembles de donnĂ©es obtenus ont finalement Ă©tĂ© utilisĂ©es pour dĂ©velopper un modĂšle cinĂ©tique du cycle ASC-GSH, permettant l'Ă©tude des flux redox et de leur rĂ©gulation au cours du dĂ©veloppement du fruit de la tomate.D'autre part, j’ai participĂ© au dĂ©veloppement d'un plateau d'analyses redox mis en place au sein de la plateforme Bordeaux Metabolome, ce qui m’a permis de participer Ă  d'autres projets, tels que la caractĂ©risation d'une nouvelle NAD kinase (Dell'Aglio et al., 2019) et la caractĂ©risation de mutants enrichis en ASC (Deslous et al., 2021). J'ai Ă©galement eu l'occasion de participer Ă  la rĂ©daction de revues visant Ă  rassembler les connaissances Ă©parses disponibles sur le mĂ©tabolisme redox dans les fruits et en rĂ©ponse aux environnements extrĂȘmes (Decros et al., 2019 ; Dussarrat et al., 2021). Par ailleurs, les donnĂ©es prĂ©liminaires obtenues au cours de ce projet ont permis de concevoir de nouveaux projets plus ciblĂ©s sur l'implication du mĂ©tabolisme redox pendant la phase de mise Ă  fruit

    Role of redox signaling by ascorbate in the performance of tomato fruit

    No full text
    Le changement de paradigme dans la biologie de l'oxydorĂ©duction (redox), considĂ©rant les expĂšces rĂ©actives de l’oxygĂšne (EROs) comme des signaux ajustĂ©s avec prĂ©cision modulant le mĂ©tabolisme des plantes, a mis en exergue les rĂ©seaux d'oxydorĂ©duction, en particulier chez les plantes oĂč de multiples sources d’EROs sont prĂ©sentes et associĂ©es Ă  de nombreux " systĂšmes de traitement des EROs " (Noctor et al., 2018). De plus, les principaux tampons redox (par exemple, l’acide ascorbique, le glutathion et les nuclĂ©otides Ă  pyridine) apparaissent clairement au premier plan des rĂ©gulations redox. La production d’EROs et les signaux redox qui en dĂ©coulent sont cruciaux pour prĂ©server l'harmonie du mĂ©tabolisme du fait de leur participation aux voies de signalisation adaptatives tout au long du dĂ©veloppement et en rĂ©ponse Ă  l'environnement. En parallĂšle, le dĂ©veloppement de la modĂ©lisation mathĂ©matique intĂ©grative a permis de nouvelles approches qui fournissent une description quantitative des flux mĂ©taboliques et de leur rĂ©gulations.Les progrĂšs dans la comprĂ©hension des signatures molĂ©culaires impliquĂ©es dans les rĂ©gulations redox, contrĂŽlant le compromis entre le dĂ©veloppement des fruits et les voies de stress, permettront de dĂ©finir de nouvelles stratĂ©gies pour une production et un stockage optimal des fruits (Beauvoit et al., 2018). Cependant, les connaissances sur la biologie de l'oxydorĂ©duction dans les fruits sont peu documentĂ©es. Bien que les principes provenant des tissus foliaires apportent une premiĂšre comprĂ©hension du mĂ©tabolisme redox, des Ă©tudes complĂštes fournissant des connaissances plus Ă©tendues sur les fruits restent manquantes.A cet Ă©gard, mon projet de thĂšse vise Ă  fournir la premiĂšre description quantitative du mĂ©tabolisme redox principal du fruit de tomate dans un contexte de dĂ©veloppement, tout en dĂ©veloppant et en mettant en Ɠuvre des protocoles permettant la quantification rapide des principaux composĂ©s redox. En outre, l'utilisation d'une approche de modĂ©lisation cinĂ©tique permettra de dĂ©chiffrer l'implication des flux redox dans le contrĂŽle de l'Ă©quilibre oxydorĂ©ducteur au cours du dĂ©veloppement du fruit.A cette fin :1. Une Ă©tude omique multi-Ă©chelle axĂ©e sur le mĂ©tabolisme du NAD au cours du dĂ©veloppement du fruit de la tomate a permis de fournir une meilleure vue de l'implication du mĂ©tabolisme du NAD dans les mĂ©tabolismes redox et central,2. Les principaux tampons redox et la capacitĂ© antioxydante totale ont Ă©tĂ© Ă©valuĂ©s Ă  l'aide d'analyses biochimiques ciblĂ©es du cycle ascorbate-glutathion, tandis que l'analyse LC-MS non ciblĂ©e a permis une comparaison globale des stades de dĂ©veloppement, en particulier vis Ă  vis des composĂ©s redox secondaires. D’autre part, des plantes mutantes enrichies en ascorbate ont Ă©tĂ© analysĂ©es pour Ă©tudier l'impact d'une augmentation de l'ASC sur le mĂ©tabolisme et le dĂ©veloppement du fruit de tomate,3. Les ensembles de donnĂ©es obtenus ont finalement Ă©tĂ© utilisĂ©es pour dĂ©velopper un modĂšle cinĂ©tique du cycle ASC-GSH, permettant l'Ă©tude des flux redox et de leur rĂ©gulation au cours du dĂ©veloppement du fruit de la tomate.D'autre part, j’ai participĂ© au dĂ©veloppement d'un plateau d'analyses redox mis en place au sein de la plateforme Bordeaux Metabolome, ce qui m’a permis de participer Ă  d'autres projets, tels que la caractĂ©risation d'une nouvelle NAD kinase (Dell'Aglio et al., 2019) et la caractĂ©risation de mutants enrichis en ASC (Deslous et al., 2021). J'ai Ă©galement eu l'occasion de participer Ă  la rĂ©daction de revues visant Ă  rassembler les connaissances Ă©parses disponibles sur le mĂ©tabolisme redox dans les fruits et en rĂ©ponse aux environnements extrĂȘmes (Decros et al., 2019 ; Dussarrat et al., 2021). Par ailleurs, les donnĂ©es prĂ©liminaires obtenues au cours de ce projet ont permis de concevoir de nouveaux projets plus ciblĂ©s sur l'implication du mĂ©tabolisme redox pendant la phase de mise Ă  fruit.The change of paradigm in redox biology, considering ROS as finely-tuned signals modulating plant metabolism, shed new light on redox networks, especially in plants where multiple sources of ROS are possible and associated with many “ROS processing systems” (Noctor et al., 2018), while major redox buffers (e.g. ASC, GSH and NAD) clearly appear at the forefront of oxidative regulations. ROS production and redox signals arising from are crucial to harmonious metabolism and participate in adaptive signalling pathways throughout development and in response to the environment. In parallel, the development of mathematical integrative modelling permitted by new approaches providing quantitative description through metabolic fluxes.Progress in understanding the molecular signatures involved in the redox regulations controlling the trade-off between fruit development and stress pathways will help to define novel strategies for optimal fruit production and storage (Beauvoit et al., 2018). However, knowledge on redox biology in fruit is sparsely documented, although principles originating from leaves tissues are valuable while waiting for comprehensive studies that provide more extensive knowledge on fruits.In this regard, my PhD project aims to provide the first quantitative description of core redox metabolism in a developmental context while developing and implementing protocols allowing the rapid quantification of major redox compounds. In addition, the use of an integrative modelling approach will allow deciphering the implication of redox flux in the control of redox balance during fruit development.For this purpose:1. A multiscale omics study focusing on NAD metabolism during tomato fruit development provides a better view of the implication of NAD metabolism in redox and central metabolism,2. Major redox buffers and total antioxidant capacity are assessed using targeted biochemical analyses of the ascorbate-glutathione cycle, while untargeted LC-MS analysis provides a global comparison of developmental stages, in particular for secondary redox compounds. Furthermore, mutant plants enriched in ascorbate have been analysed to study the impact of an increase in ASC on tomato fruit,3. The data sets obtained are finally used to develop a kinetic-based model of the ASC-GSH cycle, allowing the investigation of redox fluxes and their regulation during tomato fruit development.Besides, I participate in developing a redox platform to implement at the Bordeaux Metabolome Facility, allowing me to participate in some other projects, such as the characterisation of new NAD kinase (Dell’Aglio et al., 2019) and the characterisation of ASC-enriched mutants (Deslous et al., 2021). I also had the opportunity to participate in the writing of reviews aiming to bring together the scattered knowledge available on redox metabolism in fruits and in response to extreme environments (Decros et al., 2019 ; Dussarrat et al., 2021). Furthermore, the preliminary data obtained allowed the designing of new projects more focused on the involvement of redox metabolism during the fruit setting phase. To this end, different ASC mutant fruits have been analysed at several flower and young fruit stages

    Role of redox signaling by ascorbate in the performance of tomato fruit

    No full text
    Le changement de paradigme dans la biologie de l'oxydorĂ©duction (redox), considĂ©rant les expĂšces rĂ©actives de l’oxygĂšne (EROs) comme des signaux ajustĂ©s avec prĂ©cision modulant le mĂ©tabolisme des plantes, a mis en exergue les rĂ©seaux d'oxydorĂ©duction, en particulier chez les plantes oĂč de multiples sources d’EROs sont prĂ©sentes et associĂ©es Ă  de nombreux " systĂšmes de traitement des EROs " (Noctor et al., 2018). De plus, les principaux tampons redox (par exemple, l’acide ascorbique, le glutathion et les nuclĂ©otides Ă  pyridine) apparaissent clairement au premier plan des rĂ©gulations redox. La production d’EROs et les signaux redox qui en dĂ©coulent sont cruciaux pour prĂ©server l'harmonie du mĂ©tabolisme du fait de leur participation aux voies de signalisation adaptatives tout au long du dĂ©veloppement et en rĂ©ponse Ă  l'environnement. En parallĂšle, le dĂ©veloppement de la modĂ©lisation mathĂ©matique intĂ©grative a permis de nouvelles approches qui fournissent une description quantitative des flux mĂ©taboliques et de leur rĂ©gulations.Les progrĂšs dans la comprĂ©hension des signatures molĂ©culaires impliquĂ©es dans les rĂ©gulations redox, contrĂŽlant le compromis entre le dĂ©veloppement des fruits et les voies de stress, permettront de dĂ©finir de nouvelles stratĂ©gies pour une production et un stockage optimal des fruits (Beauvoit et al., 2018). Cependant, les connaissances sur la biologie de l'oxydorĂ©duction dans les fruits sont peu documentĂ©es. Bien que les principes provenant des tissus foliaires apportent une premiĂšre comprĂ©hension du mĂ©tabolisme redox, des Ă©tudes complĂštes fournissant des connaissances plus Ă©tendues sur les fruits restent manquantes.A cet Ă©gard, mon projet de thĂšse vise Ă  fournir la premiĂšre description quantitative du mĂ©tabolisme redox principal du fruit de tomate dans un contexte de dĂ©veloppement, tout en dĂ©veloppant et en mettant en Ɠuvre des protocoles permettant la quantification rapide des principaux composĂ©s redox. En outre, l'utilisation d'une approche de modĂ©lisation cinĂ©tique permettra de dĂ©chiffrer l'implication des flux redox dans le contrĂŽle de l'Ă©quilibre oxydorĂ©ducteur au cours du dĂ©veloppement du fruit.A cette fin :1.Une Ă©tude omique multi-Ă©chelle axĂ©e sur le mĂ©tabolisme du NAD au cours du dĂ©veloppement du fruit de la tomate a permis de fournir une meilleure vue de l'implication du mĂ©tabolisme du NAD dans les mĂ©tabolismes redox et central,2.Les principaux tampons redox et la capacitĂ© antioxydante totale ont Ă©tĂ© Ă©valuĂ©s Ă  l'aide d'analyses biochimiques ciblĂ©es du cycle ascorbate-glutathion, tandis que l'analyse LC-MS non ciblĂ©e a permis une comparaison globale des stades de dĂ©veloppement, en particulier vis Ă  vis des composĂ©s redox secondaires. D’autre part, des plantes mutantes enrichies en ascorbate ont Ă©tĂ© analysĂ©es pour Ă©tudier l'impact d'une augmentation de l'ASC sur le mĂ©tabolisme et le dĂ©veloppement du fruit de tomate,3.Les ensembles de donnĂ©es obtenus ont finalement Ă©tĂ© utilisĂ©es pour dĂ©velopper un modĂšle cinĂ©tique du cycle ASC-GSH, permettant l'Ă©tude des flux redox et de leur rĂ©gulation au cours du dĂ©veloppement du fruit de la tomate.D'autre part, j’ai participĂ© au dĂ©veloppement d'un plateau d'analyses redox mis en place au sein de la plateforme Bordeaux Metabolome, ce qui m’a permis de participer Ă  d'autres projets, tels que la caractĂ©risation d'une nouvelle NAD kinase (Dell'Aglio et al., 2019) et la caractĂ©risation de mutants enrichis en ASC (Deslous et al., 2021). J'ai Ă©galement eu l'occasion de participer Ă  la rĂ©daction de revues visant Ă  rassembler les connaissances Ă©parses disponibles sur le mĂ©tabolisme redox dans les fruits et en rĂ©ponse aux environnements extrĂȘmes (Decros et al., 2019 ; Dussarrat et al., 2021). Par ailleurs, les donnĂ©es prĂ©liminaires obtenues au cours de ce projet ont permis de concevoir de nouveaux projets plus ciblĂ©s sur l'implication du mĂ©tabolisme redox pendant la phase de mise Ă  fruit.The change of paradigm in redox biology, considering ROS as finely-tuned signals modulating plant metabolism, shed new light on redox networks, especially in plants where multiple sources of ROS are possible and associated with many “ROS processing systems” (Noctor et al., 2018), while major redox buffers (e.g. ASC, GSH and NAD) clearly appear at the forefront of oxidative regulations. ROS production and redox signals arising from are crucial to harmonious metabolism and participate in adaptive signalling pathways throughout development and in response to the environment. In parallel, the development of mathematical integrative modelling permitted by new approaches providing quantitative description through metabolic fluxes.Progress in understanding the molecular signatures involved in the redox regulations controlling the trade-off between fruit development and stress pathways will help to define novel strategies for optimal fruit production and storage (Beauvoit et al., 2018). However, knowledge on redox biology in fruit is sparsely documented, although principles originating from leaves tissues are valuable while waiting for comprehensive studies that provide more extensive knowledge on fruits.In this regard, my PhD project aims to provide the first quantitative description of core redox metabolism in a developmental context while developing and implementing protocols allowing the rapid quantification of major redox compounds. In addition, the use of an integrative modelling approach will allow deciphering the implication of redox flux in the control of redox balance during fruit development.For this purpose:1.A multiscale omics study focusing on NAD metabolism during tomato fruit development provides a better view of the implication of NAD metabolism in redox and central metabolism,2.Major redox buffers and total antioxidant capacity are assessed using targeted biochemical analyses of the ascorbate-glutathione cycle, while untargeted LC-MS analysis provides a global comparison of developmental stages, in particular for secondary redox compounds. Furthermore, mutant plants enriched in ascorbate have been analysed to study the impact of an increase in ASC on tomato fruit,3.The data sets obtained are finally used to develop a kinetic-based model of the ASC-GSH cycle, allowing the investigation of redox fluxes and their regulation during tomato fruit development.Besides, I participate in developing a redox platform to implement at the Bordeaux Metabolome Facility, allowing me to participate in some other projects, such as the characterisation of new NAD kinase (Dell’Aglio et al., 2019) and the characterisation of ASC-enriched mutants (Deslous et al., 2021). I also had the opportunity to participate in the writing of reviews aiming to bring together the scattered knowledge available on redox metabolism in fruits and in response to extreme environments (Decros et al., 2019 ; Dussarrat et al., 2021). Furthermore, the preliminary data obtained allowed the designing of new projects more focused on the involvement of redox metabolism during the fruit setting phase. To this end, different ASC mutant fruits have been analysed at several flower and young fruit stages

    Rîle de la signalisation redox par l’ascorbate dans la performance du fruit de tomate

    No full text
    Le changement de paradigme dans la biologie de l'oxydorĂ©duction (redox), considĂ©rant les expĂšces rĂ©actives de l’oxygĂšne (EROs) comme des signaux ajustĂ©s avec prĂ©cision modulant le mĂ©tabolisme des plantes, a mis en exergue les rĂ©seaux d'oxydorĂ©duction, en particulier chez les plantes oĂč de multiples sources d’EROs sont prĂ©sentes et associĂ©es Ă  de nombreux " systĂšmes de traitement des EROs " (Noctor et al., 2018). De plus, les principaux tampons redox (par exemple, l’acide ascorbique, le glutathion et les nuclĂ©otides Ă  pyridine) apparaissent clairement au premier plan des rĂ©gulations redox. La production d’EROs et les signaux redox qui en dĂ©coulent sont cruciaux pour prĂ©server l'harmonie du mĂ©tabolisme du fait de leur participation aux voies de signalisation adaptatives tout au long du dĂ©veloppement et en rĂ©ponse Ă  l'environnement. En parallĂšle, le dĂ©veloppement de la modĂ©lisation mathĂ©matique intĂ©grative a permis de nouvelles approches qui fournissent une description quantitative des flux mĂ©taboliques et de leur rĂ©gulations.Les progrĂšs dans la comprĂ©hension des signatures molĂ©culaires impliquĂ©es dans les rĂ©gulations redox, contrĂŽlant le compromis entre le dĂ©veloppement des fruits et les voies de stress, permettront de dĂ©finir de nouvelles stratĂ©gies pour une production et un stockage optimal des fruits (Beauvoit et al., 2018). Cependant, les connaissances sur la biologie de l'oxydorĂ©duction dans les fruits sont peu documentĂ©es. Bien que les principes provenant des tissus foliaires apportent une premiĂšre comprĂ©hension du mĂ©tabolisme redox, des Ă©tudes complĂštes fournissant des connaissances plus Ă©tendues sur les fruits restent manquantes.A cet Ă©gard, mon projet de thĂšse vise Ă  fournir la premiĂšre description quantitative du mĂ©tabolisme redox principal du fruit de tomate dans un contexte de dĂ©veloppement, tout en dĂ©veloppant et en mettant en Ɠuvre des protocoles permettant la quantification rapide des principaux composĂ©s redox. En outre, l'utilisation d'une approche de modĂ©lisation cinĂ©tique permettra de dĂ©chiffrer l'implication des flux redox dans le contrĂŽle de l'Ă©quilibre oxydorĂ©ducteur au cours du dĂ©veloppement du fruit.A cette fin :1. Une Ă©tude omique multi-Ă©chelle axĂ©e sur le mĂ©tabolisme du NAD au cours du dĂ©veloppement du fruit de la tomate a permis de fournir une meilleure vue de l'implication du mĂ©tabolisme du NAD dans les mĂ©tabolismes redox et central,2. Les principaux tampons redox et la capacitĂ© antioxydante totale ont Ă©tĂ© Ă©valuĂ©s Ă  l'aide d'analyses biochimiques ciblĂ©es du cycle ascorbate-glutathion, tandis que l'analyse LC-MS non ciblĂ©e a permis une comparaison globale des stades de dĂ©veloppement, en particulier vis Ă  vis des composĂ©s redox secondaires. D’autre part, des plantes mutantes enrichies en ascorbate ont Ă©tĂ© analysĂ©es pour Ă©tudier l'impact d'une augmentation de l'ASC sur le mĂ©tabolisme et le dĂ©veloppement du fruit de tomate,3. Les ensembles de donnĂ©es obtenus ont finalement Ă©tĂ© utilisĂ©es pour dĂ©velopper un modĂšle cinĂ©tique du cycle ASC-GSH, permettant l'Ă©tude des flux redox et de leur rĂ©gulation au cours du dĂ©veloppement du fruit de la tomate.D'autre part, j’ai participĂ© au dĂ©veloppement d'un plateau d'analyses redox mis en place au sein de la plateforme Bordeaux Metabolome, ce qui m’a permis de participer Ă  d'autres projets, tels que la caractĂ©risation d'une nouvelle NAD kinase (Dell'Aglio et al., 2019) et la caractĂ©risation de mutants enrichis en ASC (Deslous et al., 2021). J'ai Ă©galement eu l'occasion de participer Ă  la rĂ©daction de revues visant Ă  rassembler les connaissances Ă©parses disponibles sur le mĂ©tabolisme redox dans les fruits et en rĂ©ponse aux environnements extrĂȘmes (Decros et al., 2019 ; Dussarrat et al., 2021). Par ailleurs, les donnĂ©es prĂ©liminaires obtenues au cours de ce projet ont permis de concevoir de nouveaux projets plus ciblĂ©s sur l'implication du mĂ©tabolisme redox pendant la phase de mise Ă  fruit.The change of paradigm in redox biology, considering ROS as finely-tuned signals modulating plant metabolism, shed new light on redox networks, especially in plants where multiple sources of ROS are possible and associated with many “ROS processing systems” (Noctor et al., 2018), while major redox buffers (e.g. ASC, GSH and NAD) clearly appear at the forefront of oxidative regulations. ROS production and redox signals arising from are crucial to harmonious metabolism and participate in adaptive signalling pathways throughout development and in response to the environment. In parallel, the development of mathematical integrative modelling permitted by new approaches providing quantitative description through metabolic fluxes.Progress in understanding the molecular signatures involved in the redox regulations controlling the trade-off between fruit development and stress pathways will help to define novel strategies for optimal fruit production and storage (Beauvoit et al., 2018). However, knowledge on redox biology in fruit is sparsely documented, although principles originating from leaves tissues are valuable while waiting for comprehensive studies that provide more extensive knowledge on fruits.In this regard, my PhD project aims to provide the first quantitative description of core redox metabolism in a developmental context while developing and implementing protocols allowing the rapid quantification of major redox compounds. In addition, the use of an integrative modelling approach will allow deciphering the implication of redox flux in the control of redox balance during fruit development.For this purpose:1. A multiscale omics study focusing on NAD metabolism during tomato fruit development provides a better view of the implication of NAD metabolism in redox and central metabolism,2. Major redox buffers and total antioxidant capacity are assessed using targeted biochemical analyses of the ascorbate-glutathione cycle, while untargeted LC-MS analysis provides a global comparison of developmental stages, in particular for secondary redox compounds. Furthermore, mutant plants enriched in ascorbate have been analysed to study the impact of an increase in ASC on tomato fruit,3. The data sets obtained are finally used to develop a kinetic-based model of the ASC-GSH cycle, allowing the investigation of redox fluxes and their regulation during tomato fruit development.Besides, I participate in developing a redox platform to implement at the Bordeaux Metabolome Facility, allowing me to participate in some other projects, such as the characterisation of new NAD kinase (Dell’Aglio et al., 2019) and the characterisation of ASC-enriched mutants (Deslous et al., 2021). I also had the opportunity to participate in the writing of reviews aiming to bring together the scattered knowledge available on redox metabolism in fruits and in response to extreme environments (Decros et al., 2019 ; Dussarrat et al., 2021). Furthermore, the preliminary data obtained allowed the designing of new projects more focused on the involvement of redox metabolism during the fruit setting phase. To this end, different ASC mutant fruits have been analysed at several flower and young fruit stages

    Multi-regulated GDP-l-galactose phosphorylase calls the tune in ascorbate biosynthesis

    No full text
    Abstract Ascorbate is involved in numerous vital processes, in particular in response to abiotic but also biotic stresses whose frequency and amplitude increase with climate change. Ascorbate levels vary greatly depending on species, tissues, or stages of development, but also in response to stress. Since its discovery, the ascorbate biosynthetic pathway has been intensely studied and it appears that GDP-l-galactose phosphorylase (GGP) is the enzyme with the greatest role in the control of ascorbate biosynthesis. Like other enzymes of this pathway, its expression is induced by various environmental and also developmental factors. Although mRNAs encoding it are among the most abundant in the transcriptome, the protein is only present in very small quantities. In fact, GGP translation is repressed by a negative feedback mechanism involving a small open reading frame located upstream of the coding sequence (uORF). Moreover, its activity is inhibited by a PAS/LOV type photoreceptor, the action of which is counteracted by blue light. Consequently, this multi-level regulation of GGP would allow fine control of ascorbate synthesis. Indeed, experiments varying the expression of GGP have shown that it plays a central role in response to stress. This new understanding will be useful for developing varieties adapted to future environmental conditions

    Another Tale from the Harsh World: How Plants Adapt to Extreme Environments

    No full text
    The environmental fluctuations of a constantly evolving world can mould a changing context, often unfavourable to sessile organisms that must adjust their resource allocation between both resistance or tolerance mechanisms and growth. Plants bear the fascinating ability to survive and thrive under extreme conditions, a capacity that has always attracted the curiosity of humans, who have discovered and improved species capable of meeting our physiological needs. In this context, plant research has produced a great wealth of knowledge on the responses of plants to a range of abiotic stresses, mostly considering model species and/or controlled conditions. However, there is still minimal comprehension of plant adaptations and acclimations to extreme environments, which cries out for future investigations. In this article, we examined the main advances in understanding the adapted traits fixed through evolution that allowed for plant resistance against abiotic stress in extreme natural ecosystems. Spatio-temporal adaptations from extremophile plant species are described from morpho-anatomical features to physiological function and metabolic pathways adjustments. Considering that metabolism is at the heart of plant adaptations, a focus is given to the study of primary and secondary metabolic adjustments as well as redox metabolism under extreme conditions. This article further casts a critical glance at the main successes in studying extreme environments and examines some of the challenges and opportunities this research offers, especially considering the possible interaction with ecology and metaphenomics

    Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability

    Get PDF
    The ascorbate–glutathione (ASC–GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients. Dynamic and associated regulations of the ASC–GSH cycle throughout the whole fruit development were analysed and pointed to a sequential metabolic control of redox fluxes by ASC synthesis, NAD(P)H and ROS availability depending on the developmental phase. Furthermore, we highlighted that monodehydroascorbate reductase and the availability of reducing power were found to be the main regulators of the redox state of ASC and GSH during fruit growth under optimal conditions. Our kinetic modelling approach indicated that tomato fruit development displayed growth phase-dependent redox metabolism linked with central metabolism via pyridine nucleotides and H2O2 availability, while providing a new tool to the scientific community to investigate redox metabolism in fruits.The GLOMICAVE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 95290

    Ecological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert

    No full text
    Summary Plant–plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the ‘nursing’ effect of Maihueniopsis camachoi , a cactus that thrives in the Atacama Desert between c . 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold‐tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco‐metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi . A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress‐gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.DĂ©veloppement d'une infrastructure française distribuĂ©e pour la mĂ©tabolomique dĂ©diĂ©e Ă  l'innovationCentre français de phĂ©nomique vĂ©gĂ©tal
    corecore