6,200 research outputs found

    A categorial study of initiality in uniform topology

    Get PDF
    This thesis consists of two chapters, of which the first presents a categorial study of the concept of initiality (also known as projective generation) and the second gives applications in the theory of uniform and quasi-uniform spaces

    Non-equilibrium Transport in the Anderson model of a biased Quantum Dot: Scattering Bethe Ansatz Phenomenology

    Get PDF
    We derive the transport properties of a quantum dot subject to a source-drain bias voltage at zero temperature and magnetic field. Using the Scattering Bethe Anstaz, a generalization of the traditional Thermodynamic Bethe Ansatz to open systems out of equilibrium, we derive exact results for the quantum dot occupation out of equilibrium and, by introducing phenomenological spin- and charge-fluctuation distribution functions in the computation of the current, obtain the differential conductance for large U/\Gamma. The Hamiltonian to describe the quantum dot system is the Anderson impurity Hamiltonian and the current and dot occupation as a function of voltage are obtained numerically. We also vary the gate voltage and study the transition from the mixed valence to the Kondo regime in the presence of a non-equilibrium current. We conclude with the difficulty we encounter in this model and possible way to solve them without resorting to a phenomenological method.Comment: 20 pages, 20 figures, published versio

    Nonnormal amplification in random balanced neuronal networks

    Get PDF
    In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W being nonnormal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the tradeoff between nonnormal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely nonnormal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation, and those where inhibition dominates.Comment: 13 pages, 7 figure

    Anderson-like impurity in the one-dimensional t-J model: formation of local states and magnetic behaviour

    Get PDF
    We consider an integrable model describing an Anderson-like impurity coupled to an open tt--JJ chain. Both the hybridization (i.e. its coupling to bulk chain) and the local spectrum can be controlled without breaking the integrability of the model. As the hybridization is varied, holon and spinon bound states appear in the many body ground state. Based on the exact solution we study the state of the impurity and its contribution to thermodynamic quantities as a function of an applied magnetic field. Kondo behaviour in the magnetic response of the impurity can be observed provided that its parameters have been adjusted properly to the energy scales of the holon and spinon excitations of the one-dimensional bulk.Comment: 32 pages, 11 figure

    Production of human recombinant proapolipoprotein A-I in Escherichia coli: purification and biochemical characterization

    Get PDF
    A human liver cDNA library was used to isolate a clone coding for apolipoprotein A-I (Apo A-I). The clone carries the sequence for the prepeptide (18 amino acids), the propeptide (6 amino acids), and the mature protein (243 amino acids). A coding cassette for the proapo A-I molecule was reconstructed by fusing synthetic sequences, chosen to optimize expression and specifying the amino-terminal methionine and amino acids -6 to +14, to a large fragment of the cDNA coding for amino acids 15-243. The module was expressed in pOTS-Nco, an Escherichia coli expression vector carrying the regulatable X P^ promoter, leading to the production of proapolipoprotein A-I at up to 10% of total soluble proteins. The recombinant polypeptide was purified and characterized in terms of apparent molecular mass, isoelectric point, and by both chemical and enzymatic peptide mapping. In addition, it was assayed in vitro for the stimulation of the enzyme lecithin: cholesterol acyltransferase. The data show for the first time that proapo A-I can be produced efficiently in E. coli as a stable and undegraded protein having physical and functional properties indistinguishable from those of the natural product

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    Hadamard Regularization

    Get PDF
    Motivated by the problem of the dynamics of point-particles in high post-Newtonian (e.g. 3PN) approximations of general relativity, we consider a certain class of functions which are smooth except at some isolated points around which they admit a power-like singular expansion. We review the concepts of (i) Hadamard ``partie finie'' of such functions at the location of singular points, (ii) the partie finie of their divergent integral. We present and investigate different expressions, useful in applications, for the latter partie finie. To each singular function, we associate a partie-finie (Pf) pseudo-function. The multiplication of pseudo-functions is defined by the ordinary (pointwise) product. We construct a delta-pseudo-function on the class of singular functions, which reduces to the usual notion of Dirac distribution when applied on smooth functions with compact support. We introduce and analyse a new derivative operator acting on pseudo-functions, and generalizing, in this context, the Schwartz distributional derivative. This operator is uniquely defined up to an arbitrary numerical constant. Time derivatives and partial derivatives with respect to the singular points are also investigated. In the course of the paper, all the formulas needed in the application to the physical problem are derived.Comment: 50 pages, to appear in Journal of Mathematical Physic

    Local Leaders in Random Networks

    Get PDF
    We consider local leaders in random uncorrelated networks, i.e. nodes whose degree is higher or equal than the degree of all of their neighbors. An analytical expression is found for the probability of a node of degree kk to be a local leader. This quantity is shown to exhibit a transition from a situation where high degree nodes are local leaders to a situation where they are not when the tail of the degree distribution behaves like the power-law kγc\sim k^{-\gamma_c} with γc=3\gamma_c=3. Theoretical results are verified by computer simulations and the importance of finite-size effects is discussed.Comment: 4 pages, 2 figure

    Probing the Density in the Galactic Center Region: Wind-Blown Bubbles and High-Energy Proton Constraints

    Full text link
    Recent observations of the Galactic center in high-energy gamma-rays (above 0.1TeV) have opened up new ways to study this region, from understanding the emission source of these high-energy photons to constraining the environment in which they are formed. We present a revised theoretical density model of the inner 5pc surrounding Sgr A* based on the fact that the underlying structure of this region is dominated by the winds from the Wolf-Rayet stars orbiting Sgr A*. An ideal probe and application of this density structure is this high energy gamma-ray emission. We assume a proton-scattering model for the production of these gamma-rays and then determine first whether such a model is consistent with the observations and second whether we can use these observations to further constrain the density distribution in the Galactic center.Comment: 36 pages including 17 figures, submitted to ApJ, comments welcom

    Edge-disjoint spanners in Cartesian products of graphs

    Get PDF
    AbstractA spanning subgraph S=(V,E′) of a connected graph G=(V,E) is an (x+c)-spanner if for any pair of vertices u and v, dS(u,v)⩽dG(u,v)+c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of the component graphs. We present several results on general products and then narrow our focus to hypercubes
    corecore