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Non-equilibrium Transport in the Anderson model of a biased Quantum Dot:

Scattering Bethe Ansatz Phenomenology

Sung-Po Chao1 and Guillaume Palacios1,2

1Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854
2Instituut voor Theoretische Fysica, Universiteit van Amsterdam,

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

We derive the transport properties of a quantum dot subject to a source-drain bias voltage at
zero temperature and magnetic field. Using the Scattering Bethe Anstaz, a generalization of the
traditional Thermodynamic Bethe Ansatz to open systems out of equilibrium, we derive exact results
for the quantum dot occupation out of equilibrium and, by introducing phenomenological spin- and
charge-fluctuation distribution functions in the computation of the current, obtain the differential
conductance for large U

Γ
. The Hamiltonian to describe the quantum dot system is the Anderson

impurity Hamiltonian and the current and dot occupation as a function of voltage are obtained
numerically. We also vary the gate voltage and study the transition from the mixed valence to the
Kondo regime in the presence of a non-equilibrium current. We conclude with the difficulty we
encounter in this model and possible way to solve them without resorting to a phenomenological

method.

PACS numbers: 72.63.Kv, 72.15.Qm, 72.10.Fk

I. INTRODUCTION

The past few years have witnessed a spectacular
progress in the fabrication and exploration of nano-
structures giving experimentalists unprecedented control
over the microscopic parameters governing the physics
of these systems. Nano-structures, beyond their practi-
cal applications, display an array of emergent phenom-
ena stemming from their reduced dimensionality which
enhances quantum fluctuations and strong correlations.
Often, experiments are carried out under non-equilibrium
conditions, with currents passing through the structures.
The measurements are performed over a wide range of pa-
rameters, such as temperature and applied bias, allowing
experimental exploration of the interplay between non-
equilibrium dynamics and strong correlation physics1–6.
A canonical example is the non-equilibrium Kondo effect
observed in a quantum dot attached to two leads held at
different chemical potentials µi. The voltage difference
V = µ1 − µ2 induces a non-equilibrium current I(V )
through the dot, interfering with and eventually destroy-
ing the Kondo effect as the voltage is increased.

In this paper we develop a phenomenological ap-
proach, based on an exact method, the Scattering Bethe
Ansatz (SBA), recently developed by P. Mehta and
N. Andrei (MA)7, a non-perturbative implementation
of the Keldysh formalism to construct the current-
carrying, open-system scattering eigenstates for the two-
lead nonequilibrium Anderson impurity model, the stan-
dard model to describe the system8–21. The basic idea
of SBA is to construct scattering eigenstate of the full
Hamiltonian defined directly on the infinite line and
match the incoming states by two fermi seas describing
the initial state of the leads. The non-equilibrium steady
state transport properties of the system are then ex-
pressed as expectation values of the current or dot occu-
pation operators in these eigenstates. This program has

been implemented for the Interacting Resonance Level
Model (IRLM), a spinless interacting model, described in
Ref. 7 where the zero temperature results for current and
dot occupation 〈n̂d〉 for all bias voltages were presented.
Another exact solution of this model at the so-called self-
dual point22 by E. Boulat, H. Saleur and P. Schmitteckert
in Refs. 23,24 uses the comformal field theory and com-
pares with t-DMRG results.

Carrying out the program for the non-equilibrium An-
derson model we find difficulties in the direct applica-
tion of the SBA approach due the fact that the ground
state in the Bethe basis consists of bound pairs of quasi-
particles, leading to problems in the computation of the
scattering phase shifts for the quasi-particles with com-
plex momenta. This problem is not present in the IRLM
when the Bethe momenta are below the impurity level
and no bound states can be formed. We circumvent this
difficulty by means of the following arugment: The trans-
port property computed in the IRLM is related to the sin-
gle particle phase shift across the impurity in the Bethe
basis. Based on the same idea we develop a phenomeno-
logical approach to describe the transport property in
the Anderson impurity model. We identify two types of
possible phase shifts across impurity, which we refer to
as ”spin-fluctuation” and ”charge-fluctuation” types to
label two phenomenological phase shifts akin to the fun-
damental excitations described in the traditional Bethe
Ansatz in this model. The phenomenological Ansatz is
checked against exact results on the dot occupation in
equilibrium and the Friedel sum rule25,26, in the linear
response regime. Subsequently, we discuss our results
for the out of equilibrium current, conductance and dot
occupation. The scaling relations for the conductance,
predicted from the Fermi liquid picture of the problem
at strong and weak coupling, are also discussed.

The paper is organized as follows. We start with a
formal construction of scattering eigenstates in the two-
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lead Anderson impurity model. Then we discuss how we
impose boundary conditions, which serve as initial con-
dition in the time dependent picture, on the electrons
within the leads. Next we shall discuss our results for
the dot occupation in equilibrium and the conductance
in the linear response regime. Based on the checks in
equilibrium we then extend our computation to the out
of equilibrium regime. The difficulty we encounter for
complex momenta and the way we handle it will also be
addressed there. Comparison with another attempt of
exact solution for this model by R. M. Konik et al27,28

with the idea of dressed excitations above Fermi energy
in the Bethe Ansatz picture, first considered for the ex-
act conductance of point contact device in the FQHE
regime29,30, will be discussed. We will also comment
on the validity and implication of our numerical results,
among them the exact charge susceptibility, in the out-of-
equilibrium regime. Qualitative agreement between our
theory and experimental result is then presented. The
limit of U → ∞ is also summarized in the last section
based on the same phenomenological approach. Finally,
we summarize our results and conclude with some issues
on the SBA approach to this model, and state how they
could be overcome.

II. THE SCATTERING BETHE ANSATZ

APPROACH

A. Scattering state construction

In this section we apply the SBA approach to con-
struct the scattering states of the full Hamiltonian. The
(unfolded) 2-lead Anderson impurity Hamiltonian reads,

Ĥ =
∑

i=1,2

∫

dxψ†
iσ(x)(−i∂x)ψiσ(x) + ǫdd

†
σdσ

+ ti(ψ
†
iσ(0)dσ + d†σψiσ(0)) + U d†↑d↑d

†
↓d↓ (1)

where summation over the spin indices σ is implied. The
fields ψiσ(x) describe chiral, right-moving electrons from
lead i, U is the on-site Coulomb repulsion between elec-
trons on the dot, ti is the coupling between the dot and
the lead i, and ǫd is the gate voltage. We have set the
Fermi velocity vF = 1.
The model’s equilibrium properties have been studied

in great detail via the traditional Thermodynamic Bethe
Ansatz (TBA)31,32. The SBA exploits in a new way the
integrability of the Anderson Model to construct current-
carrying scattering eigenstates on the open line. There
are two main requirements: One is the construction of
scattering eigenstates with the number of electrons in
each lead conserved prior to scattering off the impurity.
Another is the asymptotic boundary condition: that the
wave function of the incoming electrons, i.e. in the region
(x≪ 0), tend to that of two free Fermi seas far from the
impurity7. All information about the external bias ap-
plied to the system is encoded in the boundary condition

by appropriately choosing the chemical potential of the
incoming Fermi seas. As in all Bethe-Ansatz construc-
tions, the full multi-particle wavefunction is constructed
from single particle eigenstates (now on the infinite open
line) and the appropriate two-particle S-matrices. We
first rewrite Eq. (1) in the even-odd basis as

Ĥ = Ĥe + Ĥo

Ĥe =
∑

σ

∫

dxψ†
eσ(x)(−i∂x)ψeσ(x) + ǫdd

†
σdσ

+ t(ψ†
eσ(0)dσ + d†σψeσ(0)) + Ud†↑d↑d

†
↓d↓

Ĥo =
∑

σ

∫

dxψ†
oσ(x)(−i∂x)ψoσ(x)

With

ψeσ(x) =
t1ψ1σ(x) + t2ψ2σ(x)

√

t21 + t22

ψoσ(x) =
t2ψ1σ(x) − t1ψ2σ(x)

√

t21 + t22

and t =
√

t21 + t22. In what follows we consider the
case t1 = t2 = t√

2
for simplicity. The single par-

ticle solution for even and odd basis is: |e, pσ〉 =
∫

dx (eipxgp(x)ψ
†
eσ(x) + epδ(x)d

†
σ)|0〉 and |o, pσ〉 =

∫

dx eipxhp(x)ψ
†
oσ(x)|0〉, with |0〉 the vacuum state and

gp(x), hp(x), ep independent of spin and given by

gp(x) = θ(−x) + eiδpθ(x) + sep θ(x)θ(−x) ,
hp(x) = θ(−x) + θ(x) + sop θ(x)θ(−x) , (2)

ep =
t(1 + eiδp + sep/2)

2(p− ǫd)
.

Here δp ≡ 2 tan−1( Γ
ǫd−p ) is the single particle scattering

phase shift of the electrons off the impurity with Γ ≡ t2

2
being the width of the resonance level. We adopted a
symmetric regularization scheme θ(±x)δ(x) = 1

2δ(x) and

imposed |p| ≤ D, D being the bandwidth cut-off34. The
s(x) = θ(x)θ(−x) term is a local constant (∂xs(x) = 0)
in this scheme and it is included in the odd channel func-
tion to allow the same two particle S-matrices, Eq.(4), in
all channels35. The θ(x)θ(−x) term in the even channel
wave function is introduced in order to modify the single
particle phase shift across the impurity. The choice of
sop and sep will be addressed later. In the lead basis,
|i, pσ〉, the single-particle scattering eigenstates with the
incoming particle incident from lead i, can be restored
by taking a proper linear combination of even-odd states.
For example, |1, pσ〉 = 1√

2
(|e, pσ〉+ |o, pσ〉) is written as

|1, pσ〉 =
∫

dx eipx
{

[θ(−x) + 1

2
(eiδp + 1)θ(x)]ψ†

1σ(x)

+
1

2
(eiδp − 1)θ(x)ψ†

2σ(x) + epd
†
σδ(x) + s†1pσ(x)

}

|0〉 (3)
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with |2, pσ〉 = 1√
2
(|e, pσ〉− |o, pσ〉) and s†ipσ(x) related to

the θ(x)θ(−x) terms. These states have a single incoming
particle (x < 0) from lead i, that is reflected back into
lead i with amplitude, Rp = (eiδp +1)/2 and transmitted
to the opposite lead with amplitude Tp = (eiδp − 1)/2.
Similar single particle states are discussed in Ref. 7.
The multi-particle Bethe-Ansatz wave-function is con-

structed by means of the two-particle S-matrix, S(p, k),
describing the scattering of two electrons with momenta
p and k. The two-particles solution in spin singlet state
takes the following form

|ik, ↑; jp, ↓〉 =
∫

dx1dx2A{ei(kx1+px2)Zkp(x1−x2)α†
ik,↑(x1)α

†
jp,↓(x2)}|0〉

Here
∫

dxeikixα†
iki,ai

(xi) = |iki, ai〉 with a multiplication

factor Z̃kp(0) ≡ k+p−2ǫd
k+p−U−2ǫd

Zkp(0) multiplied on the d†↑d
†
↓

term in two particles eigenstate. The explicit form for
this two particles case is written in Eq. (C5). In general

we denote the Z
ai,aj

ki,kj
(xi − xj) as S

aia
′

i

aja
′
j

(ki, kj) with ai

denotes the spin index before the scattering and a
′

i the
spin index after the scattering. The matrices must satisfy
the Yang-Baxter equations

S
a1a

′

1

a2a
′
2

(k1, k2)S
a1a

′

1

a3a
′
3

(k1, k3)S
a2a

′

2

a3a
′
3

(k2, k3)

= S
a2a

′

2

a3a
′
3

(k2, k3)S
a1a

′

1

a3a
′
3

(k1, k3)S
a1a

′

1

a2a
′
2

(k1, k2)

for such a construction to be consistent.
By choosing sop = −4 in Eq. (3) (the choice of sep

will be discussed in section B and does not affect the re-
sult here) in the single particle states we can construct
the same two-particles S-matrix for all combinations in
even-odd basis with the two-particles S-matrix (see Ap-
pendix. B) given by

Sτ,τ ′(k, p) =
(B(k)−B(p))Iτ,τ ′ + i2UΓPτ,τ ′

B(k)−B(p) + i2UΓ
(4)

with B(k) = k(k − 2ǫd − U), Pτ,τ ′ = 1
2 (1 + ~στ · ~στ ′) the

spin exchange operator. Since the S-matrix is the same
for all even-odd combinations the S-matrix does not de-
pend on the lead index i, and the number of electrons in
a lead, Ni, can change only at the impurity site. This
circumstance allows us to construct the fully-interacting
eigenstates of our Hamiltonian characterized by the in-
coming quantum numbers, N1 and N2 the numbers of
incident electrons from lead 1 and 2 respectively. These
quantum numbers are subsequently determined by the
chemical potentials µ1 and µ2.
To complete the construction of the SBA current-

carrying, scattering eigenstate, |Ψ, µi〉, we must still

choose the ”Bethe-Ansatz momenta” {pl}N1+N2

l=1 of the
single particles states to ensure that the incoming parti-
cles look like two Fermi seas in the region x < 0. This

requirement translates into a set of ”free-field” SBA equa-
tions for the Bethe-Ansatz momenta-density of the par-
ticles from the two leads7. The argument is as follows:

Away from the impurity |i, pσ〉 reduces to ψ†
iσ(x) with the

inter-particle S-matrix Eq. (4) present. Thus the scatter-
ing eigenstates describing non-interacting electrons are
in the Bethe basis rather than in the Fock basis of plane
waves. The existence of many bases for the free elec-
tron is due to their linear spectrum which leads to de-
generacy of the energy eigenvalues. The wave function
eip1x1+ip2x2 [θ(x1 − x2) + Sθ(x2 − x1)]A is an eigenstate
of the free Hamiltonian for any choice of S with, in par-
ticular, S = 1 defining the Fock basis and S given in
Eq. (4) defining the Bethe basis. The Bethe basis is the
correct ”zero order” choice of a basis in the degenerate
energy space required in order to turn on the interac-
tions. We proceed to describe the leads (two free Fermi
seas) in this basis.
We consider the system at zero temperature and zero

magnetic field in this paper. To describe the two Fermi
seas on the leads translates to a set of Bethe Ansatz
equations whose solution in this case consists of com-
plex conjugate pairs: p±(λ) = x(λ) ∓ iy(λ) in the λ-
parametrization31–33 with

x(λ) = ǫ̃d −

√

λ+ ǫ̃2d +
√

(λ+ ǫ̃2d)
2 + U2Γ2

2

y(λ) =

√

−(λ+ ǫ̃2d) +
√

(λ+ ǫ̃2d)
2 + U2Γ2

2
.

with ǫ̃d = ǫd + U/2. Each member of a pair can be ei-
ther in lead 1 or in lead 2, since the S-matrix is unity in
the lead space. There are, therefore, two possible con-
figurations for these bounded pairs. One possible way
of forming bounded pairs is described by four types of
complex solutions whose densities we denote σij(λ) with
{ij} = {11, 12, 21, 22} indicating the incoming electrons
from lead i and lead j. The other possibility, which is
perhaps more intuitive in comparing with the free elec-
tron in the Fock basis, is to include only {ij} = {11, 22}.
These two types of states give the same results when
evaluating the expectation value of the dot occupation in
equilibrium. However when we turn on the bias voltage,
the results obtained from a 4-bound states description
show some charge fluctuations even way below the impu-
rity level which is not expected from the non-interacting
(U → 0) theory (shown in Appendix A). Thus we shall
focus on the 2-bound states description in the following
discussion.
To describe in the Bethe basis the two leads as two

Fermi seas filled up to µ1 and µ2, respectively, these den-
sities must satisfy the SBA equations,

2σi(λ) = − 1

π

dx(λ)

dλ
θ(λ −Bi)

−
∑

j=1,2

∫ ∞

Bj

dλ′ K(λ− λ′)σj(λ
′) (5)
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with K(λ) = 1
π

2UΓ
(2UΓ)2+λ2 . Each density is defined on a

domain extending from Bi to the cutoff D - to be sent
to infinity. The Bi play the role of chemical potentials
for the Bethe-Ansatz momenta and are determined from
the physical chemical potentials of the two leads, µi, by
minimizing the charge free energy,

F =
∑

i

(Ei−µiNi) = 2
∑

i

∫ ∞

Bi

dλ (x(λ)−µi)σi(λ) (6)

with σ1 the lead 1 particle density and σ2 the lead 2
particle density. Note that σ1 and σ2 obeys the same
integral equation Eq. (5) with different boundary (σ1(λ)
with λ ⊂ (B1,∞) and σ2(λ) with λ ⊂ (B2,∞)). Solving
the SBA equations subject to the minimization of the
charge free energy fully determines the current-carrying
eigenstate, |Ψ, µi〉 and allows for calculation of physical
quantities by evaluating expectation value of the corre-
sponding operators. In the following we shall discuss our
results from equilibrium cases to non-equilibrium ones,
starting with the expression for various expectation value
of physical quantities.

B. Expectation value of current and dot occupation

For µ1 = µ2 all Bi are equal to some equilibrium
boundary B fixed by the choice of µi. The dot occupation

is given by the expectation value
∑

σ〈Ψ, µi|d†σdσ|Ψ, µi〉.
Taking the limit L → ∞ (L being the size of
the lead) one can express nd as an integral over
the density of λ and some matrix element ν(λ) ≃
〈p+(λ)p−(λ)|∑σ d†

σdσ|p+(λ)p−(λ)〉
〈p+(λ)p−(λ)|p+(λ)p−(λ)〉 taken to order 1

L . Here we

address the different choice of sep (with sop = −4 fixed to
have the same S-matrix in all channels) which gives rise
to different forms of ν(λ). We shall first discuss sep = 0
and show it reproduces the exact result for the dot oc-
cupation in equilibrium. While in checking the condition
for out-of-equilibrium it fails. Thus we propose sep 6= 0
schemes to circumvent this difficulty and check our pro-
posed scheme against the exact equilibrium answer in the
second part of the discussion.
(1) sep = 0: We choose sep = 0 as in the case of the 1-

lead Anderson impurity model. Denote ν(λ) = νSBA(λ)
in this choice. The dot occupation expectation value in
equilibrium is given by

nd =
〈Ψ, µ1 = µ2|

∑

σ d̂
†
σ d̂σ|Ψ, µ1 = µ2〉

〈Ψ, µ1 = µ2|Ψ, µ1 = µ2〉

= 2

∫ ∞

B

dλσ(λ)νSBA(λ) (7)

where the factor 2 in front of the integral accounts for
the spin degeneracy. The matrix element of the operator
d†σdσ in the SBA state is given by

νSBA(λ) =
2Γ

x̃2(λ) + ỹ2+(λ)
+

16y(λ)Γ2

[x̃2(λ) + ỹ2−(λ)][x̃
2(λ) + ỹ2+(λ)]

(

x̃(λ)

2x̃(λ)− U

)2

.

where we introduced, for simplified notations, the func-
tions x̃(λ) = x(λ)− ǫd and ỹ±(λ) = y(λ) ± Γ.

Eq. (7) can be proved to be exact by comparing it
with the traditional Bethe Ansatz (TBA) result. In the
latter, nd is computed as the integral of the impurity
density. This observation that the SBA and TBA results
for nd agree in equilibrium shows the connection between
the dot occupation and the dressed phase shift across
the impurity. The proof of this equivalence is given in
Appendix C.

To describe the out-of-equilibrium state we first check

if the steady state condition d〈n̂d〉
dt = 0 (or equivalently,

d〈N̂1+N̂2〉
dt = 0) is satisfied in this basis. As mentioned ear-

lier these scattering states are formed by bounded quasi-
particles with complex momenta and therefore the single
particle phase across the impurity is not well defined in
the sense that |eiδp± | 6= 1. This problem begins to sur-
face as we set out to evaluate transport expectation value

and renders

d〈n̂d〉
dt

=

∫ B22

B11

dλσb(λ)∆(λ) 6= 0 (8)

with

∆(λ) =
y2(λ)Γ2

[x̃2(λ) + ỹ2−(λ)][x̃
2(λ) + ỹ2+(λ)]

.

Thus it appears that using this basis the steady state
condition is not observed. This problem does not appear
when the momenta are real as in the IRLM case7.
(2) sep 6= 0: To remedy this problem we redefine the

single particle phase shifts across the impurity, in anal-
ogy to the results for the IRLM7, through the choice of
nonzero sep in Eq.(3). With a suitable choice of sep we

may restore a well defined single particle phase |eiδ̃±p | = 1

with δ̃±p denoting this new phase. The way we judge
whether we make the correct choice for the new phases
δ̃±p is to compare the dot occupation nd in equilibrium
before and after the redefined phase. The explicit form
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of sep and phase δ̃±p will be motivated below but first we
shall show that a single redefined phase is not sufficient
to satisfy the constraint of dot occupation comparison.
Again the choice of new phases is constrained by the

requirement that we shall obtain the same result for
〈∑σ d

†
σdσ〉 as given by νSBA(λ) in equilibrium. Based

on this constraint it can be shown explicitly that a single

well defined phase (in the sense of |eiδ̃p | = 1) is not suffi-
cient to reproduce the equilibrium νSBA(λ) as following:
The new dot amplitude ẽp+ and ẽp− have to satisfy

|ẽp+ |2 + |ẽp− |2 =
4Γ

x̃2(λ) + ỹ2+(λ))
,

|ẽp+ |2|ẽp− |2 =
4Γ2

[x̃2(λ) + ỹ2+(λ)][x̃
2(λ) + ỹ2−(λ)]

.

As both |ẽp+ |2 and |ẽp− |2 are positive we see that a sin-
gle redefined phase cannot satisfy the above constraints
simultaneously. Therefore we have to choose at least two
sets of redefined phases δ̃ip± (with i = s, h denoting spin-

fluctuation or charge-fluctuation to be addressed later)
and, along with them, some distribution functions f i to
set the weight for these phases.
To motivate the idea of searching the correct phase

shifts we shall come back to the derivation of dot occupa-
tion in traditional Bethe Ansatz (TBA) picture. In TBA
the total energy of the system is described by energy of
the leads electrons and energy shifts from the impurity,

E =
∑

j

pj =
∑

j

(

2πnj

L
+

1

L
δj

)

(9)

Based on Feynman-Hellman theorem, which is applicable
in equilibrium (closed) system, we have

〈n̂d〉 =
∂E

∂ǫd
=

1

L

∑

j

∂δj
∂ǫd

=
1

L

∑

j

∂(δp+
j
+ δp−

j
)

∂ǫd
(10)

The result for Eq. (10) agrees with those obtained from
Eq. (C2) and can be viewed as a third approach to ob-
tain the expectation value of the dot occupation. The
key observation here is that this quantity is related to
the bare phase shift δp+ +δp− and therefore the redefined
phases must be proportional to this quantity. Among
them there are two likely candidates with redefined phase
shift given by δp+ + δp− , describing the tunneling of a

bounded pair, and
δ
p++δ

p−

2 , describing the tunneling of a
single quasi-particle. In a sense this is the echo for the ele-
mentary excitations above the Fermi surface in the Bethe
basis characterized by N. Kawakami and A. Okiji36 as
charge-fluctuation excitation, which describes bounded
pair quasi-particles excitation, and spin-fluctuation exci-
tation, which describes one quasi-particle excitation. An-
other similar picture is the spin-fluctuation and charge-
fluctuation two fluids picture proposed by D. Lee et al37

albeit in a different context. We identify the phase de-
fined by

δ̃p− = δ̃p+ =
δp+ + δp−

2
≡ δ̃sp

(with sep± ≡ ssep± = 2
Γ (i(p

± − ǫd)− Γ)(ei(
δ
p+

+δ
p−

2 ) − 1))

as spin-fluctuation phase shift and

δ̃p− = δ̃p+ = δp+ + δp− ≡ δ̃hp

(with sep± ≡ shep± = 2
Γ (i(p

± − ǫd)− Γ)(ei(δp++δ
p− ) − 1))

as charge-fluctuation phase shift.
The out-of-equilibrium current is evaluated by the ex-

pectation value of current operator Î with 〈Î〉 defined
by

〈Î〉 = −
√
2iet

~
〈
∑

σ

((ψ†
1σ(0

±)−ψ†
2σ(0

±))dσ −h.c.)〉 (11)

in the state |Ψ, µi〉. Notice that ψ†
iσ(0

±) ≡
limǫ→0(ψ

†
iσ(−ǫ) + ψ†

iσ(+ǫ))/2 is introduced in transport
related quantity to be consistent with our regularization
scheme which introduces another local discontinuity in
odd channel at impurity site.
From Eq. (11) and the expression for the phases δ̃sp and

δ̃hp we have the expression for current as

I(µ1, µ2) = 〈Ψ, µ1, µ2|Î|Ψ, µ1, µ2〉

=
2e

~

∫ B2

B1

dλ σb(λ)(fs(λ)J
s(λ) + fh(λ)J

h(λ)) (12)

The corresponding spin-fluctuation and charge-
fluctuation matrix element of the current operator, de-
noted as Js(λ) and Jh(λ), are given by

Js(λ) = 1 +
sgn(x̃(λ))(x̃2(λ) + y2(λ)− Γ2)

√

(x̃2(λ) + y2(λ) − Γ2)2 + 4Γ2x̃2(λ)
(13)

Jh(λ) =
2Γ2x̃2(λ)

(x̃2(λ) + Γ2)2 − 2y2(λ)(Γ2 − x̃2(λ)) + y4(λ)
.

(14)

Here sgn(x) = x
|x| is the sign function. It is introduced

in order to pick up the correct branch when taking the
square root in denominator of Eq. (13). This way we en-
sure that Js(λ) has the proper limit when U is sent to
infinity (cf Section III). Other than the motivations men-
tioned above for identifying spin and charge fluctuation
phase shifts the functional forms of Js(λ) and Jh(λ) as a
function of bare energy x(λ) can also be used to identify
these two type of phase shifts (See Fig. 11 in Section III
for infinite U Anderson model, the finite U is similar).
Next we shall choose the appropriate weight for each

type of phase shift. So far we have not yet been able
to deduce the form of these weight functions fs(λ) and
fh(λ) and we introduce them phenomenologically. Let
us define phenomenological spin-fluctuation and charge-
fluctuation weight functions as

fs(ε(λ)) =
Ds(ε(λ))

Ds(ε(λ)) +Dh(ε(λ))
(15)
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and

fh(ε(λ)) =
Dh(ε(λ))

Ds(ε(λ)) +Dh(ε(λ))
. (16)

Here Ds(ε(λ)) is the spin-fluctuation density of state,
Dh(ε(λ)) is the charge-fluctuation density of state as de-
fined in Ref. 36, and ε(λ) is the corresponding dressed
energy i.e. the energy required to produce these spin-
and charge-fluctuation excitations above the Fermi level.
Here dressed energy refers to the sum of the bare en-
ergy of adding/removing one bound state, as in charge
fluctuation, or single quasi particle, as in spin fluctuation,
and the energy shift from other quasi particles due to this
change. The equation that solves a single quasi-particle’s
dressed energy ε(λ) reads38

ε(λ) = (x(λ) − µ)−
∫ ∞

B

dλ′K(λ− λ′)ε(λ′) . (17)

We wish to compare at this point our approach to the
one taken by Konik et al27,28. The authors’ Landauer
approach is based on an ensemble of renormalized exci-
tations, the holons and spinons, and the conductance is
expressed in terms of their phase shift crossing the impu-
rity. However, the leads are built of bare electrons and
thus one faces the difficult problem of how to construct
a bare electron out of renormalized excitations in order
to be able to impose the voltage boundary condition.
The basic approximation adopted, electron ≈ antiholon

+ spinon, is valid only when the electron is close to the
Fermi surface (see N. Andrei39), and therefore the ap-
proach is trustworthy only for very small voltages. Nev-
ertheless, the dressed excitations framework seems to give
at least qualitatively good results when another energy
scale (such as the temperature or an external field) is
turned on40. In contrast we construct the eigenstates of
the Hamiltonian directly in terms of the bare electron
field and can therefore impose the asymptotic boundary
condition that the wave function tend to a product of

two free Fermi seas composed of bare electrons. While
we do not have a mathematically rigorous derivation of
the weight functions we introduced, the validity of the
scattering formalism is not restricted to any energy win-
dow other than energy cutoff.

C. Results for equilibrium and linear response

In the numerical computation, for the practical pur-
pose, we assumed Kondo limit (U = −2ǫd,

U
Γ ≫ 1) form

of the spin-fluctuation and charge-fluctuation distribu-
tions, i.e.

Ds(ε(λ)) ≃
1

π

Tk
ε2(λ) + T 2

k

(18)

and

Dh(ε(λ)) ≃
1√
2UΓ

Γ2

(ε(λ) + ǫd)2 + Γ2
(19)

with Tk being the Kondo scale derived in Ref. 36 as

Tk =

√
2UΓ

π
eπ

ǫd(ǫd+U)+Γ2

2UΓ . (20)

We also take ε(λ) ≃ x(B) − x(λ) for numerical conve-
nience with B denoting the Bethe momenta given by
µ1 = µ2 = 0. The dot occupation 〈∑σ d

†
σdσ〉 evaluated

by these new phases is given by

〈
∑

σ

d†σdσ〉 = 2

(

∫ ∞

B1

dλσb(λ)(ν
s(λ)fs(λ)+ν

h(λ)fh(λ))

+

∫ ∞

B2

dλσb(λ)(ν
s(λ)fs(λ) + νh(λ)fh(λ))

)

(21)

with νs(λ) and νh(λ) given as

νs(λ) =
1

Γ

[

1− (x̃2(λ) + y2(λ)− Γ2)
√

(x̃2(λ) + y2(λ)− Γ2)2 + 4Γ2x̃2(λ)

]

×
[

1 + 8y(λ)
1

Γ

(

1− (x̃2(λ) + y2(λ) − Γ2)
√

(x̃2(λ) + y2(λ)− Γ2)2 + 4Γ2x̃2(λ)

)

(

x̃(λ)

2x̃(λ)− U

)2
]

(22)

νh(λ) =

[

2Γx̃2(λ)

(x̃2(λ) + Γ2)2 − 2y2(λ)(Γ2 − x̃2(λ)) + y4(λ)

]

×
[

1 +
36y(λ)Γx̃2(λ)

(x̃2(λ) + Γ2)2 − 2y2(λ)(Γ2 − x̃2(λ)) + y4(λ)

(

x̃(λ)

2x̃(λ)− U

)2
]

(23)

respectively. We may check whether this choice of phe-
nomenological distribution functions satisfy the condition

in equilibrium that

〈
∑

σ

d†σdσ〉 = 4

∫ ∞

B

dλσb(λ)ν
SBA(λ)

= 4

(
∫ ∞

B

dλσb(λ)(ν
s(λ)fs(λ) + νh(λ)fh(λ))

)

. (24)
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We can see from the Top of Fig. 1 that the compari-
son between the phenomenological and the exact result
for the dot occupation in equilibrium is good deep into
the Kondo regime (ǫd ≃ −U

2 ) and far away from it
(ǫd ≫ 0) but is worse when we are in mixed valence
region (ǫd ≃ 0). This discrepancy, due in part to the ap-
proximations we made forDs(ε) andDh(ε), may go away
if we took more realistic form of Ds(ε(λ)) and Dh(ε(λ))
also in mixed valence regime as suggested in Fig. 1. How-
ever the numerical procedure is much more complicated
there. We confine ourself to this simpler limit in our
phenomenological approach.
Another check on our result in equilibrium is to find the

linear response conductance through our formulation and
compare with the exact linear result given by the Friedel
sum rule25,26. The Friedel sum rule, which relates the
equilibrium dot occupation to the phase shift experienced
by electrons crossing the dot, is related to zero voltage
conductance by dI

dV |V =0 = 2 sin2(π〈n̂d〉/2). The zero bias
conductance in our construction can be analyzed easily41

by noting that at low-voltage eV = µ1 − µ2 ≃ 2π
L (N1 −

N2) = 4π
∫ B2

B1
σb(λ)dλ. By taking B2 ≃ B1 = B in the

expression for the current across the impurity Eq. (12)
we get the zero bias conductance expressed as

dI

dV

∣

∣

∣

V =0
=
e2

h

[

fs(B)Js(B) + fh(B)Jh(B)
]

(25)

Here B = B(µ, ǫd,Γ, U) is determined by µ1 = µ2 = 0.
The comparison between Friedel sum rule (FSR) re-
sult and the conductance given by Eq. (25) (denoted as
(pSBA)) is shown at the Bottom of Fig. 1. It displays
the consequence of the equilibrium Kondo effect in the
quantum dot set up: due to the formation of the Kondo
peak attached to the Fermi level the Coulomb blockade
is lifted and a unitary conductance is reached for a range
of gate voltages ǫd around −U/2. Again we see that the
comparison is good for large U/Γ but poorer in mixed
valence regime for smaller U/Γ, which is consistent with
the observation we made when evaluating 〈n̂d〉 as shown
in top figure of Fig. 1. Having checked our results in
equilibrium we shall go on to compute the current and
the dot occupation in the out-of-equilibrium regime.

D. Results Out-Of-Equilibrium

Now let us begin to investigate the current and dot oc-
cupation change as we turn on the voltage. We start with
the discussion on current vs voltage for various regime.
The current vs voltage is plotted in the inset of figure of
Fig. 2 for different values of U and at the symmetric point
ǫd = −U/2. Note that we use an asymmetric bias volt-
age when solving numerically the integral equations orig-
inating from Eq. (5) with constraint of minimizing the
charge free energy Eq. (6): Namely we fix µ1 ≃ 0 (around
10−3−10−5) and lower µ2. Therefore, a direct confronta-
tion between the results obtained from real-time simula-
tions of the Anderson model out-of-equilibrium17,18,21 is
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FIG. 1: Top: 〈n̂d〉 as a function of ǫd from the exact result
(dotted line) and from Eq. (24) (solid line). Bottom: The
differential conductance in the linear-response regime, as a
function of ǫd from the phenomenological Scattering Bethe
Ansatz (pSBA) and exact linear response conductance from
Friedel sum rule (FSR) for Γ = 0.5, 0.25, 0.1, and U = 8.

difficult but the main features of our calculation match
the predicted results: a linear behavior of the I-V charac-
teristics at low-voltage, the slope being obtained from the
FSR (2 in units of e2/h at the symmetric point), and a
non-monotonic behavior at higher voltage, the so-called
non-linear regime. In particular, our calculations show
clearly that the current will decrease as U/Γ is increased
which is in agreement with other numerical approaches
(e.g. cf Fig. 2 of Ref. 18 for a comparison).
The plots of the differential conductance vs source

drain voltage for different dot levels, ǫd, tunneling
strengths Γ and interaction strengths U are shown in
Fig. 2 and Fig. 4. Two major features emerge from these
plots: 1) A narrow peak around zero bias reaching max-
imal value of 2e2/h (the unitary limit) for values of the
gate voltage close to the symmetric point (ǫd ≃ −U/2).
2) A broader peak developing at finite bias. The first
peak is a non-perturbative effect identified as the many
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body Kondo peak, characteristic of strong spin fluctua-
tions in the system. But the broad peak is due to renor-
malized charge fluctuations around the impurity level.
Notice the two features merge as the gate voltage, ǫd
is raised from the Kondo regime, ǫd = −U/2, to the
mixed valence regime, ǫd = 0, with the Kondo effect dis-
appearing. As a function of the bias the various curves
describing the Kondo peak for different values of the pa-
rameters can be collapsed onto a single universal function
dI/dV = dI/dV (V/T ∗

k ) as shown in Fig. 3. Here T ∗
k is

defined as

T ∗
k = c1

√
2UΓ

π
e

ǫd(ǫd+U)+Γ2

2UΓ (26)

with c1 = 0.002. The energy scale T ∗
k was ex-

tracted from the numerics by requiring that the function
dI/dV (V/T ∗

k ) decreases to half its maximal value when
V ≃ T ∗

k . The expression for T ∗
k as given by Eq. (26) dif-

fers from the thermodynamic Tk as defined in Eq. (20).
The difference of prefactor in the exponential is certainly
related to the unusual choice of regularization scheme in
the SBA34. The other possible implication for this dif-
ferent formulation for the Kondo scale is also addressed
later when we discuss the experiment done by L. Kouwen-
hoven et al5.
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FIG. 2: dI/dV vs V/Γ for Γ = 1, ǫd = −U/2, and various
U . Inset: Steady state current vs voltage curves for Γ = 1,
ǫd = −U/2, and various U . Dashed line is a line with constant

conductance 2e2

h
plotted for comparison.

The small voltage behavior for differential conductance
in symmetric case, i.e. ǫd ≃ −U

2 , is expected to be11,14

dI

dV

∣

∣

∣

V ≪T∗
k

≃ 2e2

h

(

1− αV

(

V

T ∗
k

)2
)

and allows us to identify the constant αV from the
quadratic deviation from 2e2/h. The quadratic fit of the
universal curve around V ≃ 0, as shown in Fig. 3, gives
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FIG. 3: Top: Zoomed in picture of the differential conduc-
tance vs voltage nearby zero voltage. Inset shows the univer-
sality in conductance vs voltage scaled by T ∗

k when V
T∗
k

≤ 1.

The quadratic behavior occurs for V
T∗
k

< 0.5 as indicated by

the fitted curve. Bottom: Differential conductance vs voltage
scaled by T ∗

k nearby the Kondo peak structure. Inset shows
the logarithmic behavior when V

T∗
k

≫ 1. Γ = 0.5 for all these

data sets.

αV ≃ 1. It is also expected for T ∗
k ≪ V ≪ U

2 that the

tail of the peak decays logarithmically 11 as

dI

dV
∼ 2e2

h

1

ln2( V
T∗
k

)
.

The latter behavior is observed (see inset of Fig. 3 ) in the
regime U

Γ ≫ 1 for 102 < V
T∗
k

< 104 with the logarithmic

function given by

dI

dV
=
e2

h

[

f

(

U

Γ

)

+
c2

ln2( V
T∗
k

)

]

with the parameter c2 = 0.055. Here f(UΓ ) is simply
a constant (in V ) shift. As suggested from the bottom
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FIG. 4: dI/dV vs V/4Γ for U = 8, Γ = 0.25 and various
ǫd from Kondo (ǫd = −4) to mixed valence regime (ǫd ≃ 0).
Inset: Comparison of ln(T ∗

k ) − ln(c1) and ln(VHWHM) as a
function of impurity level ǫd. Here VHWHM is the voltage
difference estimated at half value of differential conductance
at zero voltage. The constant shift − ln(c1) is chosen to give
the best fit in the data away from ǫd = −U

2
.

plot of Fig. 3 (see also Fig. 13 for the infinite U case) the
charge fluctuation side peak does not fall into the same
scaling relation but the strong correlations shift the cen-
ter of the side peak closer to V = 0 (see Fig. 2 and Fig. 4).
In other words the position of the resonance in the dI/dV
curve naively expected around V = |ǫd| is renormalized42

by the presence of interactions. In the inset of Fig. 4 we
show the logarithm of the voltage obtained at half width
half maximum (HWHM) of the zero voltage peak and
compare it with

lnT ∗
k =

ǫd(ǫd + U) + Γ2

2UΓ
+ ln

(

c1

√
2UΓ

π

)

(after subtracting the constant ln c1). What is impor-
tant and universal is that both quantities (lnVHWHM

and lnT ∗
k ) exhibit a quadratic behavior in the gate volt-

age ǫd. Similar results had been found experimentally
by L. Kouwenhoven et al5 when they compare the full
width half maximum of dI/dV (from which they obtain
a Kondo scale Tk1 at finite voltage) with the tempera-
ture dependence of the linear response differential con-
ductance (from which another Kondo scale Tk2 is ex-
tracted). It is suggested from our numerical results that
both lnTk2 (in analogy with our Tk) and lnTk1 (which
is our T ∗

k ) follows similar quadratic behavior in ǫd but
differ in their curvatures by a factor of π. In Ref. 5 the
curvatures of the quadratic behavior differ by a factor of
around 2 (see Fig.3B in Ref. 5) which is attributed to
dephasing of spin fluctuations at finite voltage.
Notice that in all the numerical data shown for cur-

rent vs voltage we have chosen U
Γ ≥ 8 to explore the

scaling relation in the Kondo regime. Another reason is

that our phenomenological distribution functions intro-
duced to control the relative weight for spin- and charge-
fluctuation contributions work is much better in the large
U
Γ regime (cf. Fig. 1).
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FIG. 5: 〈n̂d〉 vs V/Γ for different U with ǫd = −U
2
and Γ = 1

case. Inset: The corresponding nonequilibrium charge sus-
ceptibility. A small peak shows up nearby V = 0 for all these
curves.
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dV

vs V/4Γ for Γ = 0.25, U = 8, and various ǫd
from Kondo to mixed valence regime. We see that the small
peak nearby V = 0 only appears when ǫd → −U

2
. Inset: The

corresponding 〈n̂d〉 vs V/4Γ.

Next let us study the change in the dot occupation as
a function of the voltage. The extension of the com-
putation of the dot occupation out of equilibrium is
straightforward. Suppose we find the correct distribu-
tion functions fs(λ) and fh(λ) then we have νSBA(λ) =
νs(λ)fs(λ)+ν

h(λ)fh(λ). Under this assumption νSBA(λ)
retains its form in and out-of-equilibrium and the general
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FIG. 7: −∆〈n̂d〉
∆ǫd

for various fixed voltages as a function of ǫd
for Γ = 0.25, U = 8. Inset shows 〈n̂d〉 vs ǫd for various fixed
voltage.

expression for 〈n̂d〉 is

nd(µ1, µ2) = 〈Ψ, µ1, µ2|n̂d|Ψ, µ1, µ2〉 (27)

= 2

(

∫ ∞

B1

dλ σb(λ)ν
SBA(λ) +

∫ ∞

B2

dλ σb(λ)ν
SBA(λ)

)

As the form for νSBA(λ) is proved to be exact in equilib-
rium, we shall regard Eq. (27) as an exact result for 〈n̂d〉
in and out of equilibrium and valid in all different range
of U , ǫd, Γ. In the numerical results shown hereafter we
shall use this exact expression, Eq.(27), for matrix ele-
ment of dot occupation rather than Eq. (24). We adopt
the same voltage drive scheme by fixing µ1 and lowering
µ2.
By using this exact result we do not need to con-

fine ourself for large U
Γ . The case for different U

Γ with

ǫd = −U
2 and for U = 8,Γ = 0.25 with different ǫd are

shown in Fig. 5 and Fig. 6. The main features of these
plots are a relatively slow decrease of the dot occupation
at low voltage followed by an abrupt drop of 〈nd〉. The
decrease of 〈nd〉 takes place within a range of voltage
of the order of Γ. Then as we increase the voltage fur-
ther another plateau develops. Note that, as expected,
the bigger U is the higher the voltage needed to drive
the system out of the 〈nd〉 = 1 plateau. In a sense the
charge fluctuations are strongly frozen at large U and it
costs more energy to excite them. The voltage where
the abrupt drop in 〈nd〉 occurs corresponds to the en-
ergy scale at which the ”charge fluctuation peak” was
observed in the conductance plots. This can be seen by
comparing the position of the broader peak in Fig. 4 with
that of the abrupt dot occupation drop in Fig. 6.
Similar to the differential conductance we may define

the nonequilibrium charge susceptibility as

χc(V )|ǫd = −∂〈n̂d〉
∂V

that we obtain by taking a numerical derivative of the dot
occupation data with respect to the voltage. In the case
of U = −ǫd/2 there are two features as can be seen from
the inset of Fig. 5 and main figure of Fig. 6. Nearby V ≃
0 we see a first small peak arising with width and height
decreasing with increasing U

Γ . We identify this peak as
a small remnant of the charge fluctuations in the Kondo
regime. This statement is confirmed by noticing that this
peak goes away as U

Γ increases, vanishing when U → ∞
as shown in Section III where the infinite U Anderson
model is discussed. The second peak is located at the
same voltage as the charge fluctuation peak observed in
the conductance plots and is therefore associated to the
response of the renormalized impurity level to the charge
susceptibility. This can be seen when comparing Fig. 4
and Fig. 6.
Another interesting quantity, the usual charge suscep-

tibility, defined by χc(ǫd)|V = −∂〈n̂d〉
∂ǫd

, can also be quali-

tatively described. In Fig. 7 we plot −∆〈n̂d〉
∆ǫd

as a function
of ǫd as we only have a few points in fixed ǫd for finite
voltage. Notice that χc(ǫd)|V tends to be an universal
curve in large voltage, indicating charge on the dot re-
mains at some constant value in the steady state with
large voltage. This constant value at large voltage, as
pointed out by C. J. Bolech, is around 0.65 for ǫd = −U

2
case. In preparing this article we noticed that a simi-
lar computation, adopting the same asymmetric voltage
drive protocol as we have here, is carried out by R. V.
Roermund et al19 for the dot occupation out of equilib-
rium by using equation of motion method. We do get a
similar value for the dot occupation at large voltage. This
value is different from the dot occupation value nd ≃ 0.5
at large voltage when the interaction U is turned off as
shown in Fig. 12. This difference might have to do with
the 0.7 structure observed in quantum point contact4 in
high temperature (temperature is high compared with
the Kondo scale but still small compared with phonon
modes or electronic level) and zero magnetic field as the
linear response conductance given by nd = 0.65 by using
Friedel sum rule is around 0.73. In a sense the voltage
seems to play a similar role to the temperature on the
way it influences the dot occupation. Further connection
between these two behaviors could be clarified by com-
puting the decoherence factor as in Ref. 19. This deco-
herence factor is related to the dot correlation function
out of equilibrium which can be computed in three-lead
setup47 by using our approach.

E. Comparison with other theoretical and

experimental results

In most of the other theoretical approaches16–20,27,28

the symmetric voltage drive (µ1 = −µ2) is usually as-
sumed to preserve particle-hole symmetry in symmetric
case (ǫd = −U

2 ). It is thus difficult for us to make any
definite comparison with other theoretical results. The
qualitative feature, as shown by the black curves in Fig. 8
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done by D. Matsumoto20 by using perturbation expan-
sion in U at strong coupling fixed point, is similar to our
results in the sense that the height of the charge fluctua-
tion side peak and width are almost the same. The major
differences are in the shape of Kondo peak and the posi-
tion of the charge fluctuation side peak. A clear signature
of renormalized dot level ǫd as hinted in renormalization
computation42,43 is clearly seen in our result. The shape
of Kondo resonance nearby zero voltage deviates from its
quadratic behavior expected from Fermi liquid picture at
smaller voltage in our case as is expected for asymmetric
voltage drive13,15.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 8: Comparison of our theory with perturbation expan-
sion in U done by D. Matsumoto on dI/dV (y-axis in unit of
2e2/h) vs V/U (x-axis). Our data (Blue, purple, and brown
lines correspond to Γ

U
= 0.13, 0.083, 0.063 respectively. ∆

shown in inset is Γ in our notation. EQ in the inset is con-
ductance computed by equilibrium density of state which is
not relevant to our discussion here.) is shown as the main
figure and Fig.8 in Ref 20 is shown in the inset. In Ref 20
the voltage is driven symmetrically, i.e. µ1 = −µ2, rendering
the factor of two difference in the voltage (i.e. V

U
= 0.5 in

our case corresponds to eV
U

= 1 in the inset. e = 1 in our
convention.) in comparing our result with that in Ref 20.

We can also compare our results with experiments. As
shown in the inset of Fig. 9 is the dI

dV vs V measured

in Co ion transistor by J. Park et al.6. We rescaled the
differential conductance and superimposed our numerical
results on the data graph. The measurement was done
by using an asymmetric drive of the voltage (by keep-
ing µ1 = 0 and changing µ2 to be larger or smaller than
zero) and thus there is an asymmetry in the differential
conductance as a function of voltage as illustrated in the
data curve. In our numerics we only compute the sce-
nario for µ1 = 0 and lowering µ2 (only for V > 0 region
of Fig. 9). The V < 0 region is plotted by just a reflection
with respect to the V = 0 axis which illustrates the case
of µ2 = 0 and lowering µ1. To compare with the correct
voltage setup on the V < 0 side as in experiment will
involve computations within a different parametrization
for bare the Bethe momenta which is beyond our current

-15 -10 -5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

FIG. 9: Comparison of theory with experiment of dI/dV (y-
axis in unit of e2/h) vs V (x-axis in unit of mV ). Inset is
the original data graph published in Ref. 6. The red dots are
given by our theory for U

Γ
= 8 with voltage rescaled to fit

with original data in unit of mV . The value of differential
conductance (experiment data in black line) is rescaled from

(0.6, 1.3) to (0, 2) in unit of e2

h
.

scope. The comparison on the V > 0 region shows good
agreement between our theory and experimental result.
The discrepancy on the width of the charge fluctuation
side peak could be due to the vibron mode44. To de-
scribe these type of transistors we shall start with the
Anderson-Holstein Hamiltonian. We are currently ex-
ploring the possibility of solving this model by the Bethe
Ansatz approach.

III. INFINITE U ANDERSON MODEL

In the limit of U
Γ → ∞ the finite U two-lead Ander-

son impurity Hamiltonian becomes the two-lead infinite
U Anderson model. The latter model is closely related,
via the Schrieffer-Wolff transformation45, to the notori-
ous Kondo model, a model of spin coupled to a Fermi
liquid bath. The reason for that is simple: since U → ∞
the charge fluctuations are essentially frozen out and only
the spin fluctuations dominate the low-energy physics.
The Hamiltonian is given by

Ĥ =
∑

i=1,2

∫

dxψ†
iσ(x)(−i∂x)ψiσ(x) + ǫdd

†
σdσ

+ ti(ψ
†
iσ(0)b

†dσ + d†σbψiσ(0)) (28)

Here the bosonic operator b is introduced to conserve
b†b+

∑

σ d
†
σdσ = 1 and by applying the slave boson tech-

nique we project out the phase space of double occupancy
occurring in finite U case. The corresponding Bethe mo-
menta distribution function for the infinite U Anderson
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model is given by

2σ(Λ) =
1

π
−
∫ B2

−∞
dΛ′K(Λ− Λ′)σ(Λ′)

−
∫ B1

−∞
dΛ′K(Λ− Λ′)σ(Λ′) (29)

with K(Λ) = 1
π

2Γ
(2Γ)2+(Λ−Λ′)2 .

Eq. (29) can be derived directly following the proce-
dures in the finite U Anderson model. It can also be
derived from the finite U result, Eq. (5), by taking the
large U limit (U ≫ ǫd, U ≫ Γ):

x(λ)

U
→ 1

2
−

√

√

√

√

λ
U2 + 1

4 +
√

( λ
U2 + 1

4 )
2 + Γ2

U2

2

→ 1

2
−

√

λ
U2 + 1

4 + | λ
U2 + 1

4 |
2

(30)

→ 1

2
− 1

2
(1 +

2λ

U2
+ . . .) → − λ

U2
=

Λ

U

y(λ)

U
→

√

−( λ
U2 + 1

4 ) + (( λ
U2 + 1

4 )
2 + Γ2

U2 )1/2

2

→

√

√

√

√

( λ
U2 + 1

4 )(−1 + (1 +
( Γ
U
)2

( λ

U2 + 1
4 )

2 )
1/2)

2
(31)

→
(

1

4

( Γ
U )2

1
4

)1/2

+O(U−2) ≃ Γ

U

with Λ ≡ − λ
U . Similar procedures as in Appendix C give

the matrix element νSBA
∞ (Λ) for the dot occupation in

the infinite U Anderson model in equilibrium to be

νSBA
∞ (Λ) =

2Γ

(Λ− ǫd)2 + (2Γ)2
. (32)

In going to the out-of-equilibrium regime (µ1 6= µ2) we
follow the same phenomenological method as for the fi-
nite U case. The result for the spin-fluctuation and
charge-fluctuation contributions to the dot occupation
are given by

νs∞(Λ) =
1

Γ

(

1− ǫd − Λ
√

(ǫd − Λ)2 + 4Γ2

)

νh∞(Λ) =
2Γ

(Λ− ǫd)2 + (2Γ)2
. (33)

We shall again check the consistency with the exact result
for the dot occupation in equilibrium, namely

〈
∑

σ

d†σdσ〉 = 4

∫ B

D

dΛ σb(Λ)ν
SBA
∞ (Λ)

= 4

∫ B

D

dΛ σb(Λ)(ν
s
∞(Λ)f∞

s (Λ) + νh∞(Λ)f∞
h (Λ)) .

Here D is related to the bandwidth and B is determined
by the equilibrium Fermi energy µ1 = µ2 = 0. f∞

s (Λ)
and f∞

h (Λ) are expressed as

f∞
s (Λ) =

T∞
k /π

(Λ −B)2 + (T∞
k )2

f∞
h (Λ) =

2Γ

(Λ −B − ǫd)2 + (2Γ)2
.

Here the Kondo scale T∞
k used in fs(Λ) takes the form

46

T∞
k =

√

10|D|Γ
π

e−π
|ǫd|

Γ .

The results for the dot occupation and Friedel sum rule
check in the infinite U case are shown in Fig.10. Again we
see a nice match between our phenomenological approach
and the exact result for | ǫdΓ | 6= 0 and some mismatch in
the mixed valence region| ǫdΓ | ≃ 0. This is consistent with
the results for finite U .
The corresponding spin and charge fluctuation matrix

element for current, Js
∞(Λ) and Jh

∞(Λ), are given by

Js
∞(Λ) = 1− ǫd − Λ

√

(ǫd − Λ)2 + 4Γ2

Jh
∞(Λ) =

2Γ2

(Λ− ǫd)2 + (2Γ)2
(34)

The current expectation value is given by

〈Î〉 = 2e

~

∫ B1

B2

dΛσ(Λ)(Js
∞(Λ)f∞

s (Λ) + Jh
∞(Λ)f∞

h (Λ))

where B1 and B2 are related to µ1 and µ2 by minimizing
charge free energy F

F = 2

(

∫ B1

D

dΛ σ(Λ)(Λ − µ1) +

∫ B2

D

dΛ σ(Λ)(Λ − µ2)

)

.

Before we proceed to discuss the numerical results for
current vs voltage in this infinite U model let us look at
the structure of Js

∞(Λ) and Jh
∞(Λ) as a function of Λ as

shown in Fig. 11. Λ here represents the bare energy of
the quasi-particle and plays the same role as x(λ) in the
finite U Anderson model. Js

∞(Λ) alone would reproduce
the main feature in the Friedel sum rule for ǫd ≪ 0. In
this region the linear response conductance comes mainly
from the spin fluctuations. The upper plot of Fig. 11 fixes
ǫd and shows Js

∞(Λ) vs Λ. We may also fix Λ = 0 (in the
sense of choosing the equilibrium Fermi surface energy at
Λ = 0) and plot Js

∞(ǫd) vs ǫd. In this way we can see that
Js
∞(ǫd) vs ǫd reproduces the overall structure of the linear

response conductance from the Kondo region (ǫd ≤ 0) to
the mixed valence regime (ǫd ≃ 0). Therefore we identify

the phase shift
δ
p++δ

p−

2 , contributing to Js
∞(Λ), as the

phase shift related to spin-fluctuation.
Jh
∞(Λ) gives a Lorentz shape in bare energy scale Λ.

This structure is akin to the charge fluctuation side peak
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FIG. 10: Top: 〈n̂d〉 vs ǫd
Γ

for exact TBA result and pSBA.
Bottom: Linear response conductance dI/dV |V →0 vs ǫd

Γ
for

exact result (FSR) and pSBA in the infinite U Anderson
model. D

Γ
= −100. Similar to the case of finite U the com-

parison nearby mixed valence region (ǫd ≃ 0) is poorer.

with peak position at energy scale around ǫd as seen from
lower plot of Fig. 11. Thus we identify the phase shift
δp+ + δp− , contributing to Jh

∞(Λ), as the phase shift re-
lated to charge-fluctuation. These structures also apply
to the case of the finite U Anderson model.
Now let us discuss the out of equilibrium numerical

results. The voltage is again driven asymmetrically by
fixing µ1 ≃ 0 and lowering µ2. The exact dot occupation
vs voltage for different ǫd for infinite U and U = 0, ǫd

Γ =
−6 case (black dots) are shown in Fig. 12. We see again
the dot occupation decreases slowly at low voltage and
develops an abrupt drop at a voltage scale corresponding
to impurity level ǫd. Also notice the apparent difference
between the U = 0 plot (black dots) and the U → ∞ case
(red dots) and for the same value of ǫd

Γ . For U → ∞, the
dot occupation at large voltage is around 0.65 for ǫd

Γ ≪ 0
which is consistent with the result of the finite U case
when U

Γ is large (cf. Section II D). In contrast the non-

-10 -8 -6 -4 -2 0 2 4
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FIG. 11: Js(Λ) and Jh(Λ) vs Bethe momenta Λ (scaled by Γ)
in infinite U Anderson model. ǫd

Γ
= −4 in this graph. Similar

graph appears for finite U case with x-axis replaced by real
part of Bethe momenta x(λ).
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FIG. 12: 〈n̂d〉 vs ǫd
Γ

in infinite U Anderson model (for Red,
Blue, and Purple dots. The Black dots are U = 0 case shown
for comparison). D

Γ
= −100 in this graph.

interacting case (U = 0) shows that 〈nd〉 → 0.5 at large
bias.
The phenomenological current vs voltage and the cor-

responding differential conductance vs voltage are plot-
ted in the top figure of Fig. 13. Again we see the zero
bias anomaly and a broad charge fluctuation side peak
in the differential conductance vs voltage. The scaling
relation of differential conductance vs voltage expected
in small voltage region can also be extracted by rescaling
the voltage by T∞∗

k as shown in bottom figure of Fig. 13.
Here T∞∗

k is given by

T∞∗
k =

√

10|D|Γ
π

e−π
|ǫd|

2Γ .
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FIG. 13: Top: dI
dV

vs V
Γ

in infinite U Anderson model. Inset

shows the I−V curves for these parameters. D
Γ

= −100 in this

graph. Bottom: dI
dV

vs V
T∗
k

shows the scaling relation nearby

zero voltage for ǫd
Γ

= −6,−5,−4 (Blue, Purple, Brown).

Notice this T∞∗
k differs from T∞

k with a factor of two
within the exponent. This factor of two difference rep-
resents the difference in the curvature of the parabola as
function of ǫd (the logarithm of half width at half maxi-
mum of the Kondo peak vs ǫd shows parabolic curve as
in inset of Fig. 5 for finite U case). This factor of two ra-
tio bears even closer resemblance to the results shown in
Ref. 5. Note that in bottom figure of Fig. 13 the positions
of the side peak are different and show no universality in
that region. It shows universality for V

T∗
k

≤ 1.

IV. CONCLUDING REMARKS

In this article we have explicitly computed the non-
equilibrium transport properties in the Anderson model
for all voltages using the Scattering Bethe Ansatz. In the
case of equilibrium we have also shown the equivalence of
traditional Bethe Ansatz and Scattering Bethe Ansatz by
evaluating dot occupation in equilibrium. For the expres-
sion of current we have introduced phenomenological dis-

tribution functions to set the weight for spin-fluctuation

and charge-fluctuation contributions to the current. The
result shows correct scaling relation in Kondo regime as
well as satisfying the Friedel sum rule for linear response
for large U

Γ .
Other interesting quantities, such as the nonequilib-

rium charge susceptibility or the usual charge suscep-
tibility, are computed numerically via exact expression
for dot occupation as a function of voltage and impurity
level. We believe this is the first report of an exact com-
putation of the dot occupation out-of-equilibrium and it
may have interesting application in quantum computing
as we understand more the dephasing mechanism. We
have also compared our results with perturbation calcu-
lation and experimental measurement of nonlinear differ-
ential conductance of a quantum dot.
The major difficulty we encounter by using SBA comes

from the single particle phase shift for complex momenta
which leads to a breakdown of steady state condition
when out of equilibrium. One possible issue resulting
in this is the local discontinuity at odd channel sop,
the choice we made to enable us to construct a scat-
tering state with fixed particles from lead 1 and lead
2. It can be proved that without this choice we can-
not write down fixed number of particles incoming from
each lead35 in this Anderson impurity model and simi-
larly for IRLM. The other issue in the study for Ander-
son model is whether we shall include all possible bound
states in the ground state construction. From the math-
ematical structure we shall choose 4 type of bound states
but the results from charge susceptibility seems to sug-
gest 2 type of bound states is the correct choice. To check
whether this is in general correct we plan to come back
to study the whole spectrum, which include bound state
when Bethe energy higher than impurity level, of IRLM
as this model bares structure similarity to the Anderson
model described in this article. Following the SBA on
IRLM7 there are lots of numerical approach and different
exact methods23 developed for this model and detailed
comparison for different approaches is desired for better
understanding its physics and scaling relation. By learn-
ing how to deal with complex momenta in this model we
may also find the rule which may lead us to the exact

expression for current in this Anderson impurity model.
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Appendix A: Discussion of 2 strings vs 4 strings

As we have discussed in the main text the bounded
pair, formed by p±(λ) = x(λ) ∓ iy(λ), can be formed by
quasi-momenta from lead 1 or lead 2. We have shown the
results for two type of strings (bound states). Namely the
strings are formed by {ij} = {11, 22} with i, j denoting
incoming lead indices. In this section we discuss the case
of 4 type of strings and show thier corresponding numer-
ical results in out of equilibrium regime (In equilibrium
the 2 strings and 4 strings give the same result for dot
occupation).
The density distribution for the Bethe momenta (ra-

pidities) is denoted by σij(λ) with {ij} = {11, 12, 21, 22}
indicating the incoming electrons from lead i and lead j.
The σij(λ) is given by

4σij(λ) = − 1

π

dx(λ)

dλ
−
∑

i,j=1,2

∫ ∞

Bij

dλ′ K(λ− λ′)σij(λ
′)

(A1)
The factor of 4 indicates 4 type of possible configurations
and the constraint of exclusions in rapidities λ in solv-
ing the quantum inverse scattering problem. The idea is
that in equilibrium four type of distributions are equally
possible for each bound state bare energy 2x(λ). The Bij

play the role of chemical potentials for the Bethe-Ansatz
momenta and are determined from the physical chemical
potentials of the two leads, µi, by minimizing the charge
free energy,

F =
∑

i

(Ei − µiNi) =
∑

i

∫ ∞

Bij

dλ (x(λ) − µi)σ(i)(λ)dλ

with σ(1) ≡ 2σ11 + σ12 + σ21 the lead 1 particle density
and σ(2) ≡ 2σ22 + σ12 + σ21 the lead 2 particle density.
In the case of µ1 > µ2 we have B11 < B12 = B21 < B22

for this finite U Anderson model but the equation for
σij(λ) is the same for different combination of i and j.
The reason is we put a quasi-hole state, rather than a
quasi-particle, in the integral equation Eq.(A1) similar
to the treatment of Wiener-Hopf approach. For example,
for B11 < λ < B22 there could be three type of quasi-
particle state {ij} = {11, 12, 21} and we put {ij} = {22}
state as quasi-hole state. This hole state still count one
weight of the probability of 4 distributions and therefore
the factor of 4 on the left hand side of Eq.(A1) retains
even out of equilibrium. Similar idea is also applied in
two type of bound state (strings) solution.
Other than their differences in the density distribution

the computations for the current and dot occupation ex-
pectation value are quite similar to the two strings case.
We show their numerical results in the following.
The differential conductance vs voltage as shown in

Fig.14, obtained by taking numerical derivative on cur-
rent vs voltage data, essentially gives the same picture as

in two strings case, namely a sharp Kondo peak nearby
V = 0 and a broad side peak corresponding to charge
fluctuations. In the case of 〈nd〉 vs V , however, there is
an additional feature occurring at an energy scale higher
than the energy scale of the charge fluctuation side peak
(corresponding to the voltage position of 2nd peak shown
in the inset) as shown in Fig. 15. This is especially ap-
parent if we looked at the nonequilibrium charge suscep-
tibility as shown in inset of Fig.15.

As we do not expect there should be any further charge
fluctuations, we rule out, by physical argument, the pos-
sibility of 4 strings configuration.
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zero voltage.
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Appendix B: Two particles solution and choice of sop

For the two particles solution we follow similar con-
struction in P B Wiegmann and A M Tsvelick’s work31

and the Scattering Bethe Ansatz approach developed by
P. Mehta and N. Andrei7. Since Eq.(1) is rotational in-
variant the spin quantum number is conserved. We show
the solution with both particles with spin singlet incom-
ing from lead 1 as an example in the following. Spin
quantum number in z direction Sz is a good quantum
number and we can write the two particle solution of
Sz = 0 state as:

|Ψ〉 =
{

∫

dx1dx2{Ag(x1, x2)ψ†
e↑(x1)ψ

†
e↓(x2)

+Ch(x1, x2)ψ
†
o↑(x1)ψ

†
o↓(x2)+Bj(x1, x2)(ψ

†
e↑(x1)ψ

†
o↓(x2)

− ψ†
e↓(x1)ψ

†
o↑(x2))}+

∫

dx(Ae(x)(ψ†
e↑(x)d

†
↓ − ψ†

e↓(x)d
†
↑)

+Bo(x)(ψ†
o↑(x)d

†
↓ − ψ†

o↓(x)d
†
↑)) +Amd†↑d

†
↓

}

|0〉

Here A,B,C are arbitrary constants to be determined
later. To satisfy Ĥ|Ψ〉 = E|Ψ〉 = (k + p)|Ψ〉 we have:

0 = [−i(∂x1 + ∂x2)− E]g(x1, x2)

+t[δ(x1)e(x2) + δ(x2)e(x1)] (B1)

0 = [−i(∂x1 + ∂x2)− E]h(x1, x2) (B2)

0 = [−i(∂x1 + ∂x2)− E]j(x1, x2) + tδ(x1)o(x2)(B3)

0 = (−i∂x − E + ǫd)e(x) + tg(0, x) + tδ(x)m (B4)

0 = (−i∂x − E + ǫd)o(x) + tj(0, x) (B5)

0 = (U + 2ǫd)m+ 2te(0)− Em (B6)

For U = 0 the model becomes non-interacting and the
two particles solution becomes direct product of two one
particle solutions.

|Ψ〉 = |ψk↑〉 ⊗ |ψp↓〉+ |ψp↑〉 ⊗ |ψk↓〉

=

∫

dx1dx2{(gk(x1)ψ†
e↑(x1)+hk(x1)ψ

†
o↑(x1)+ekd

†
↑δ(x1))

(gp(x2)ψ
†
e↓(x2) + hp(x2)ψ

†
o↓(x2) + epd

†
↓δ(x2))

+ (gp(x1)ψ
†
e↑(x1) + hp(x1)ψ

†
o↑(x1) + epd

†
↑δ(x1))

(gk(x2)ψ
†
e↓(x2) + hk(x2)ψ

†
o↓(x2) + ekd

†
↓δ(x2))}|0〉

Therefore at U = 0 we have:

g(x1, x2) = gk(x1)gp(x2) + gk(x2)gp(x1)

h(x1, x2) = hk(x1)hp(x2) + hk(x2)hp(x1)

j(x1, x2) = gk(x1)hp(x2) + hk(x2)gp(x1)

e(x) = ekgp(x) + epgk(x)

o(x) = ekhp(x) + ephk(x)

m = 2epek

Now for U 6= 0 we shall derive the solution of this form

g(x1, x2) = Zkp(x1 − x2)gk(x1)gp(x2)

+ Zkp(x2 − x1)gk(x2)gp(x1) (B7)

Plug Eq.(B7) into Eq.(B1) we get

e(x) = Zkp(−x)gp(x)ek + Zkp(x)gk(x)ep (B8)

Plugging above two results into Eq.(B4) into Eq.(B6) we

get for m = 2Z̃kp(0)ekep we have:

(−i∂xZkp(−x))gp(x)ek + (−i∂xZkp(x))gk(x)ep

−tZkp(−x)epδ(x)ek
−tZkp(x)ekδ(x)ep + 2tZ∗

kp(0)ekep = 0 (B9)

2Z̃kp(0)ekep

=
2t(Zkp(0)gp(0)ek + Zkp(0)gk(0)ep)

p+ k − U − 2ǫd
(B10)

Now take Zkp(x) = e−iφkpθ(−x) + eiφkpθ(x)

we get tan(φkp) = −Ut2

(k−p)(p+k−U−2ǫd)
and

Z̃kp(0) = k+p−2ǫd
k+p−U−2ǫd

Zkp(0). Define Γ ≡ t2

2 and

B(k) ≡ k(k − 2ǫd − U) as in Ref. 32 we can rewrite
tan(φkp) =

−2UΓ
(B(k)−B(p)) .

From Eq.(B2) we can write h(x1, x2) as:

h(x1, x2) = Zoo
kp(x1 − x2)hk(x1)hp(x2)

+ Zoo
kp(x2 − x1)hk(x2)hp(x1) (B11)

with arbitrary Zoo
kp(x1 − x2). Now write j(x1, x2) as:

j(x1, x2) = Zeo
kp(x1 − x2)gk(x1)hp(x2)

+ Zeo
kp(x2 − x1)hk(x2)gp(x1) (B12)

again with Zeo
kp(x1 − x2) undetermined. Plug Eq.(B12)

into Eq.(B3) we get o(x) is written as:

o(x) = Zeo
kp(−x)hp(x)ek + Zeo

kp(x)hk(x)ep (B13)

Now if we choose Zeo
kp(x1 − x2) = Zkp(x1 − x2) and plug

Eq.(B12) and Eq.(B13) into Eq.(B5) we get:

(−k + ǫd)Zkp(−x)hp(x)ek + (−p+ ǫd)Zkp(x)hk(x)ep

+t(Zkp(−x)hp(x)gk(0) + Zkp(x)hk(x)gp(0))

+(−i)(∂xZkp(−x))hp(x)ek + (−i)(∂xZkp(x))hk(x)ep

= −2 sin(φkp)(hp(0)ek − hk(0)ep) = 0 (B14)

To satisfy Eq.(B14) we can set hp(0) = 0 for arbitrary p.
This can be done by choosing sop = −4 in Eq.(3). Now
since Zoo

kp(x1 − x2) is arbitrary we can choose Zoo
kp(x1 −

x2) = Zkp(x1 − x2). Also from Eq.(B10) we have

Z̃kp(0) =
p+ k − 2ǫd

p+ k − U − 2ǫd
Zkp(0) (B15)

Since the Hamiltonian in Eq.(1) has rotational invariance
the general form of scattering matrix for particles with
momentum k, p and spins σ1, σ2 is given by:

S
σ
′

1σ
′

2
σ1σ2 (k, p) = b(k, p) + c(k, p)P̂12 (B16)



17

where P̂12 = 1
2 (1 ·1+ ~σ1 · ~σ2) is the permutation operator

in spins. For antiparallel spins (singlet state) as shown

above P̂12 = −1 thus we have:

b(k, p)− c(k, p) =
Zkp(x > 0)

Zkp(x < 0)

=
B(k)−B(p)− i2UΓ

B(k)−B(p) + i2UΓ
(B17)

For the triplet state (P̂12 = 1) the interaction term with
the impurity is absent and the particles passing through
each other without changing their phase

b(k, p) + c(k, p) = 1 (B18)

Thus from Eq.(B17) and Eq.(B18) we get the two particle
S-matrix as:

Ŝ(k, p) =
(B(k)−B(p))Iτ,τ ′ + i2UΓPτ,τ ′

B(k)−B(p) + i2UΓ
(B19)

Thus the integrability of two lead with Anderson type
dot system is the similar to the integrability of one lead
Anderson model.
The choice of identical two particles S-matrices (by

choosing sop = −4) enables us to construct the scat-
tering state labeled by lead indices by choosing appro-
priate A,B,C in this even-odd basis. For example, if
both particles are coming from lead 1, we shall choose

(A,B,C) = A0(
t2

t22
, −t2

t1t2
, t

2

t21
) such that the amplitude of

incoming state from lead 2 is zero (A0 being an overall
renormalization constant). We can therefore label the
eigenstate by the incoming state from lead i and/or lead
j. Without this sop term we cannot write back from even-
odd basis to lead indices basis in this two leads Anderson
model and similarly in IRLM in Ref. 7.

Appendix C: Equivalence of TBA and SBA in

equilibrium

Eq.(7) can be proved to be exact by comparing
with the traditional Bethe Ansatz where 〈∑σ d

†
σdσ〉 =

2
∫∞
B

dλσimp(λ) with impurity density σimp(λ) given by

σimp(λ) =
δp+ + δp−

2π
−
∫ ∞

B

dλ′K(λ−λ′)σimp(λ
′) (C1)

By comparing Eq.(C1) and Eq.(5) in equilibrium
(σi(λ) = σb(λ) describing bulk quasi-particle density
when B1 = B2 = B.) we get

∫ ∞

B

dλσimp(λ)

(−1

π

dx(λ)

dλ

)

=

2

∫ ∞

B

dλσb(λ)

(

δp+ + δp−

2π

)

(C2)

by noting that the integration kernel K(λ − λ′) is sym-
metric in λ and λ′. Since the equality is true for arbitrary
B we can also rewrite Eq.(C2) as

∫ ∞

B

dλσimp(λ) = 2

∫ ∞

B

dλσb(λ)

(

δp+ + δp−

−2dx(λ)
dλ

)

≡ 2

∫ ∞

B

dλσb(λ)ν
TBA(λ)

and the resulting νTBA(λ) is given by

νTBA(λ) =
−x̃(λ) y

′(λ)
x′(λ) − ỹ−(λ)

x̃2(λ) + ỹ2+(λ)

+
x̃(λ) y

′(λ)
x′(λ) + ỹ+(λ)

x̃2(λ) + ỹ2+(λ)
(C3)

Now let us show the computation for νSBA(λ). First we
write one particle state of Eq.(1) in even channel (with
sek = 0 for the moment) as

|k, σ〉 =
∫

eikxα†
ek,σ(x)dx|0〉 (C4)

=

∫

eikx{(θ̄ +Akθ)ψ
†
eσ +Bkd

†
σδ(x)}dx|0〉

Solving Ĥ|k, σ〉 = k|k, σ〉 we get

−i(−1 +Ak) +Bkt = 0

ǫdBk + t
1 +Ak

2
= kBk

Thus we get Ak =
k−ǫd−i t2

2

k−ǫd+i t
2

2

and Bk = t

k−ǫd+i t2

2

. We may

also define gk(x) = eipx(θ̄ + Akθ) and ek = Bk to have
easier comparison with Wiegmann and Tsvelick’s work31.
The two particles state is obtained by constructing prod-
uct of two α†

ep,σ(x) particles state with appropriate two
particles S-matrix expressed in Zk+k−(x1 − x2).

In principle we shall use |Ψ, N1, N2〉 as the many body
state to compute expectation value. However the simpli-
fication here, similar to the case of IRLM in Ref.7, is that
different λ (corresponding to different p(λ)) are orthogo-
nal to each other in L → ∞ limit. Thus the many body
expectation value can be obtained via two body compu-
tation and the rest just get canceled by normalization
factor. We shall demonstrate the explicit computation
for two particles in the following.

Denote |Ψ〉 as the two particles solution. We may write
spin singlet state as
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|Ψ〉 =

∫

dx1dx2A
{

ei(kx1+px2)Zkp(x1 − x2)α
†
ek,↑(x1)α

†
ep,↓(x2)

}

|0〉

=

∫

dx1dx2

{

Zkp(x1 − x2){gk(x1)gp(x2)ψ†
↑(x1)ψ

†
e↓(x2) + gk(x1)epψ

†
↑(x1)d

†
↓δ(x2)

+ ekgp(x2)d
†
↑δ(x1)ψ

†
↓(x2) + ekepd

†
↑d

†
↓δ(x1)δ(x2)} − Zkp(x2 − x1){gk(x2)gp(x1)ψ†

e↓(x2)ψ
†
e↑(x1)

+ gk(x2)epψ
†
e↓(x2)d

†
↑δ(x1) + ekgp(x1)d

†
↓δ(x2)ψ

†
e↑(x1) + ekepd

†
↓d

†
↑δ(x1)δ(x2)}

}

|0〉

=
{

∫

dx1dx2[Zkp(x1 − x2)gk(x1)gp(x2) + Zkp(x2 − x1)gk(x2)gp(x1)]ψ
†
e↑(x1)ψ

†
e↓(x2)

+

∫

dx[Zkp(x)gk(x)ep + Zkp(−x)gp(x)ek](ψ†
e↑(x)d

†
↓ − ψ†

e↓(x)d
†
↑) + 2ekepZ̃kp(0)d

†
↓d

†
↑

}

|0〉

With A denoting anti-symmetrization and Z̃kp(0) =
k+p−2ǫd

k+p−U−2ǫd
Zkp(0).

Solving Ĥ|k, σ; p,−σ〉 = (k + p)|k, σ; p,−σ〉 we obtain

Zkp(x1 − x2) = θ(x1 − x2) +
(k − p)(k + p− 2ǫd − U)− iUt2

(k − p)(k + p− 2ǫd − U) + iUt2
θ(x2 − x1)

For the case of bound state the two particle S-matrix is
given by Zk+k−(x1 − x2) = θ(x1 − x2) ≡ θx12. The nor-

malization factor and matrix element of dot occupation
given by the even channel two particles wavefunction are

〈Ψ|Ψ〉 =

∫

dy1dy2

∫

dx1dx2(θ
y
12gk+(y1)gk−(y2) + θy21gk+(y2)gk−(y1))

∗

×(θx12gk+(x1)gk−(x2) + θx21gk+(x2)gk−(x1))δ(x1 − y1)δ(x2 − y2)

+2

∫

dy

∫

dx[θ(y)gk+ (y)ek− + θ(−y)gk−(y)ek+ ]∗[θ(x)gk+ (x)ek− + θ(−x)gk− (x)ek+ ]δ(x− y)

+4(ek+ek− Z̃k+k−(0))∗(ek+ek− Z̃k+k−(0))
∑

σ

〈Ψ|d̂†σ d̂σ|Ψ〉 = 2

∫

dy

∫

dx[θ(y)gk+ (y)ek− + θ(−y)gk−(y)ek+ ]∗[θ(x)gk+(x)ek− + θ(−x)gk−(x)ek+ ]δ(x − y)

+8(ek+ek− Z̃k+k−(0))∗(ek+ek− Z̃k+k−(0))

= 2

{
∫

dx[θ(x)|gk+ (x)ek− |2 + θ(−x)|gk−(x)ek+ |2] + 4|ek+ek−Z̃k+k−(0)|2
}

Note that the even channel bound state can be written as
sum over bound state of {11, 12, 21, 22} (4 strings type)
or {11, 22} (2 strings type) with the same real part of
energy k = x(λ). This can be viewed as the consistency

counting from Fock basis to Bethe basis as electrons in
lead 1 and lead 2 has 4 fold degeneracies in its initial
state (2 different spins in each lead). Also note that
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∫

dx1dx2 θ
x
12|gk+(x1)gk−(x2)|2 =

∫

dx1dx2|ei(k
+x1+k−x2)(θ̄1 + θ1Ak+)(θ̄2 + θ2Ak− )|2θ12

=

∫

dx1dx2 e
−2ξk(x1−x2)|θ̄1θ̄2θ12 + θ1θ̄2θ12Ak+ + θ1θ2θ12Ak+Ak− |2

=

(

L

2ξk
− 1− e−2ξkL

(2ξk)2

)

(

1 + |Ak+Ak− |2
)

+

(

1− e−2ξkL

2ξk

)2

|Ak+ |2

∫

dx θ(x)|gk+ (x)ek− |2 =

∫

dx θ(x)|ei(k+iξk )x(θ(−x) +Ak+θ(x))ek− |2 =

∫ L

0

dx e−2ξkx|Ak+ek− |2

=
1

2ξk

∣

∣

∣

∣

∣

k − ǫd + iξk − iΓ

k − ǫd + iξk + iΓ

t

k − ǫd − iξk + iΓ

∣

∣

∣

∣

∣

2

=
1

2ξk

∣

∣

∣

∣

∣

t

k − ǫd + iξk + iΓ

∣

∣

∣

∣

∣

2

∫

dx θ(−x)|gk− (x)ek+ |2 =

∫

dx θ(−x)|ei(k−iξk)x(θ(−x) +Ak−θ(x))ek+ |2 =

∫ 0

−L

dx e2ξkx|Ak−ek+ |2

=
1

2ξk

∣

∣

∣

∣

∣

t

k − ǫd + iξk + iΓ

∣

∣

∣

∣

∣

2

with Z̃k+k−(0) = 2(k−ǫd)
2(k−ǫd)−UZk+k−(0) and Zk+k−(0) = 1

2

based on our regularization scheme. By expressing k =

x(λ) and ξk = y(λ) and taking L → ∞ thus preserving
1
L terms only we get

〈Ψ|∑σ d̂
†
σ d̂σ|Ψ〉

〈Ψ|Ψ〉 =
1

L
νSBA(λ) (C5)

=
1

L

{

2Γ

x̃2(λ) + ỹ2+(λ)
+

16y(λ)Γ2

(x̃2(λ) + ỹ2−(λ))(x̃
2(λ) + ỹ2+(λ))

(

x̃(λ)

2x̃(λ) − U

)2
}

.

By expressing νTBA(λ) and νSBA(λ) in λ explicitly we
see that νTBA(λ) = νSBA(λ). Since 〈∑σ d

†
σdσ〉 =

2
∫∞
B
dλσimp(λ) in TBA we have proved that the expecta-

tion value evaluated by the state we constructed is exact
and the equivalence of SBA and TBA in equilibrium in
this two-lead Anderson model.
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