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Abstract

A spanning subgrapki= (V, E’) of a connected grapéi = (V, E) is an(x + ¢)-spanner if for any
pair of verticesu andv, dg(u, v) <dg(u, v) + ¢ wheredg anddg are the usual distance functions
in G andS respectively. The parameteiis called the delay of the spanner. We study edge-disjoint
spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct
sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of
the component graphs. We present several results on general products and then narrow our focus to
hypercubes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A spanner of a graph is a spanning subgraph in which the distance between any pair of
vertices approximates the distance in the original graph. Although spanners were introduced
by Peleg and Ullmaifi20] for simulation of synchronous distributed systems, they are an
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interesting graph theoretical structure with application to many problems in interconnection
networks[4,5,18,19] The use of spanners as a network topology (as a substitute for an
expensive original topology) was suggested by Richards and Liedidrand further
studied in a series of papers by Liestman and Shefh%13,16,14,17and Heydemann et

al. [8]. Algorithms for constructing spanners have also been stydiéd,10]

One problem encountered in parallel computing is to share the resources among several
users concurrently. One way to approach this problem is to multitask on the computers but
to dedicate each link to an individual user. In graph-theoretic terms, this corresponds to
partitioning the edges into a set of edge-disjoint spanners. Lafores{Et dtudied edge-
disjoint spanners in complete graphs and in complete digraphs. Laforesfi&t]atudied
edge-disjoint spanners in complete bipartite graphs. In this paper, we continue this line of
study, investigating edge-disjoint spanners in Cartesian products of graphs (and specifically
in hypercubes). The remainder of this paper is organized as follows: in Section 2, along
with other definitions and notation, we define our problem. In Section 3, we investigate
edge-disjoint spanners in general Cartesian products. In Section 4, we restrict our attention
to hypercubes.

2. Definitions

A network is represented by a connected simple grépk (V(G), E(G)). We use
dg(u, v) to denote the distance from vertexto vertexv in graphG. A spannerS of a
connected simple graghis an f (x)-spanneif for any pair of verticesi andv, ds (u, v) <
f(dg(u,v)). We calldg(u, v) — dg(u, v) thedelay between vertices u and v inFr an
f(x)-spannefS we refer tof (x) — x as thedelayof the spanner. Note thgt(x) — x is an
upper bound (but not necessarily a tight bound) on the maximum delapétween any
pair of vertices at distancein G.

We useH x G to denote the Cartesian product of base graghend G. The vertex
setV(H x G)is V(H) x V(G) ={[u,v] : u € V(H) andv € V(G)}. The edge set
E(H x G) contains all pairg[u, v], [u’, v']) such that either (1) =«’ and(v, v') € E(G),
or (2)v =" and(u, u’) € E(H). The definition easily extends to the productabase
graphsG1 x G2 x - - - x G, which will be denoted by ]"_, G;. The following generalization
of the Cartesian product is useful in constructing edge-disjoint spanners. Given a coloring

of vertices ofH, the color-i productof graphsH andG, written H X G, is the graph with
vertex setV (H) x V(G) and all edges$[u, v], [/, v']) such that (1) = u’, the color ofu
inHisi, and(v,v) € E(G), or (2)v=1v" and(u,u’) € E(H). Note that if all vertices
of H are colored, then the coloi-product is simply the Cartesian product. For technical
reasons while performing the operation of the calpreduct we extend the coloring bf
to H x G by assigning the color aof € V(H) to every verteXu, v] € V(H lx G).

The (closed neighborhoodof a vertexv in graph G, denotedNg[v], is {x € V
dg (v, x) <1}. More generally, thd—neighborhoodNé[v] ofvinGis{xeV :dg (v, x) <d}.

A d-dominating sebf vertices in grapl@ is a setS C V such that every vertex i is in
thed-neighborhood of some element®fA d-domatic coloringof G is a vertex coloring of
G such that each color class constitutesdominating set ofs. A d-domatic coloring need
not be a proper vertex coloring; we allow adjacent vertices to be assigned the same color.
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The maximum number of colors in akydomatic coloring of a fixed grap® is called the
d-domatic numbeof G. The 1-domatic number of a grajhis the well-known domatic
number ofG and will be denoted byom (G).

LetGbeagraphandlet, Sa, ..., Si be edge-disjoint subgraphs®@fA vertex coloring
of G is called anall-factor ddomatic coloring of G with respect t8;, So, ..., S if the
vertices of each color constitutededominating set in each; for 1< j <k. In contrast, a
vertex coloring ofG with k colors is called anatched-factor edlomatic coloring of G with
respect taSy, So, ..., Sk if the vertices of each colarconstitute ad-dominating set of the
subgraphs;. These colorings were studied by Alon et[4]. and we will use the results of
that paper below.

Our goal is to investigate small delay spanners of Cartesian products. We are particularly
interested in those spanners with constant delayi.g- ¢)-spanners for constant More
precisely, given a constant we are interested in the maximum number of edge-disjoint
(x + ¢)-spanners that can be found@ We let EDSG, ¢) denote this number.

3. General Cartesian products

In this section, we present several results on the number of edge-disjoint spanners that
can be found in graphs that are the Cartesian product of other graphs. Typically, these results
are lower bounds on the number of spanneir G, based on the number of spanners of
H and some properties &f or its spanners. We start with a preliminary lemma concerning
the delay of a spanner constructed as the Cartesian product of spanners.

Lemma 1. Let G1, Go, ..., G, be graphs and lef5; be a delayc; spanner ofG; for
i=12,...,a.ThenS =[]7_,S; isadelay c spanner & =[]_,G;, wherec=3"7_,c;.

Proof. As eachs; is a spanner ofG;, it follows that S is a spanner ofs. Let u =
[u1, uo, ..., uy] andv =[v1, vo, ..., vy] be two vertices o6 such thai;, v; € V(G;) for
eachi. Then,ds(u, v) = Y7 ds, (i, vi) <Y 7_1(dg, i, vi) + i) =dgu, v) + Y.7_qci.
Thus,Sis a delayc spanner ofs as claimed. [J

The constructions in the remainder of this section follow a central scheme which is il-
lustrated inFig. 1 In particular, we construct spannersifx G by taking a color product
of a spanner o with G. That is, each spanner & x G will include the same edges
in each copy oH, some entire copies db, and no other edges. The edges included in
each copy oH are the edges of some spannetbfThe copies ofG included in a par-
ticular spanner correspond to a color class in a coloringl.oln a particular spannes
of H x G, those vertices oH corresponding to a copy db that is included inS are
calledhubs We can bound delays of such spannergfinc G by delays along paths in
H that include a hub. In general, the number of spannerd of G that we obtain de-
pends on the number of color classes in the coloringdafnd the number of spanners
of H in the set of edge-disjoint spannerstdf The delay of the spanners &f x G de-
pends on the coloring dfi and the properties of the spanners in the set of edge-disjoint
spanners oH.
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Fig. 1. A central scheme for the construction of spanner& of G. Three spanners are shown. Each spanner
contains some copies Gfindicated by the vertical ovals and a spanner in each coyrdicated by the horizontal
ovals. The spannet§; of H are chosen from a set of edge-disjoint spannets.of

In the following theorem, we use the connectivity of the spanneirstofoound the delay
of the spanners aff x G.

Theorem 1. Let H be a graph on n vertices with k edge-disjoint delay ¢ spaneah of
which isp-connected. Then for any connected graph G

EDS(H x G,c+2{%J +2> >k,

Proof. Let H1, Ho, ..., H; bep-connected edge-disjoint delaypanners of. Color the
vertices ofH with colors 1 2, ..., k, in such a way that every color class has cardinality at
least|n/ k| (where we allow adjacent vertices to receive the same colorj For2, . . ., k,

letS; = H; X G. Thesek graphs are edge-disjoint spannergbik G.

Consider the spannes; for somei. Letu = [h1, g1] andv = [h2, g2] be two vertices
of S;, wherehy, ho € V(H) andgi, g2 € V(G). Let b be a vertex of color that is
closest tahy in H;. The vertexk is a hub ofS;. There is a pat® in S; from u = [h1, g1]
to [k}, g1] to [hY, g2] to [h1, g2] tO [h2, g2] = v with lengthdy, (h1, /’lél_) + dg (g1, g2) +
dg; (h, h1) 4+ dp; (ha, h2) = 2dp, (h1, hY) + dG (81, g2) + du; (h1, h2). SinceH; has delay
C, dp; (h1, ho) <dp(h1, h2) + ¢, and the delay o is at most 2y, (h1, h’) + c.

We now boundiy, (h1, hy). If hy = h', thendpy, (h1, h}) = 0, and the lemma follows.
Therefore we may assume that # h7. Let h* be any vertex of color in H;. By our
assumptionky # h*. SinceH; is p-connected, there agevertex-disjoint paths from; to
h*in H;. As there are at moat— 1 — |n/k] vertices ofH; different fromh1 and of color
other than, one of these vertex-disjoint paths contains at most- 1 — |n/k])/p| such
vertices. Sincé™ has colori, on this path, there must be a vertex of cdlat distance at
most|(n — 1 — [n/k])/p] + 1 fromhj. As a consequence,

dp; (hy, h) < L%J +1,

and the delay oP is at most 2(n — 1 — |n/k])/p] + 2 + ¢, giving the result. [J
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By using the same construction but considering the diameters of the spanhaiaioér
than their connectivities, one obtains the following result.

Theorem 2. Let H be a graph with k edge-disjoint spanners each of diameter at most d.
Then for any connected graph EDS(H x G, 2d) >k.

In the previous theorems, we have placed relatively few conditions on the coloring used
in our central scheme. In what follows, we make use of more sophisticated colorings to
obtain better bounds.

The following theorem uses a natural proper coloringdaind will be a useful starting
point for our investigation of hypercube spanners in Section 4.

Theorem 3. Let H be any bipartite graph and let>2 be an integer. IEDS(H, ¢) > 2,
then for any connected graph, GDS(H x G, ¢) > 2.

Proof. We can properly color vertices éf with colors 1 and 2. Lef{; and H, be edge-

disjoint delayc spanners ofl. Fori =1, 2, letS; = H; X G. S1 andSy are two edge-disjoint
spanners o x G.

In the following, we bound the delay ¢, the case of> is similar. Letu = [h1, g1] and
v = [h2, g2] be two vertices ob;. If g1 = g2, then bothu andv are in some copy off; in
H x G and their delay is at most Otherwiseg, # go.

First consider the case whémn=h». Leth) be a neighbor oy in Hy. Eitherhy or k) is
of color 1. If 1 has color 1, then there is a p@liromu =[h1, g1]to [h}, g1]1to [A], g2] tO
[h1, g2] = v with length 1+ dg (g1, g2) + 1< 2+ dg (g1, g2). If h1 is the vertex of color 1,
there is a path from to v with lengthdg (g1, g2). In either case, the delay is at most 2.

Now consider the case whén # h». If hy has color 1, then there is a pathSpfrom
u=[hy, g1]to[ha, g2]to[h2, g2]=v withlengthdg (g1, g2)+du, (h1, h2) <dpxc(u, v)+c.
Otherwise i1 has color 2. Let be a neighbor ofi; on a shortest path frorm to 72 in
Hi. There is a path i§y fromu =[hy, g1]1to [h], g11t0 [R], g2] tO [h2, g2] = v with length
1+dg (g1, g2) +(dpy(h1, h2) — 1) <dg (g1, 82) +du (h1, hp) +c=dpxc(u, v)+c. Thus,
in either case, the delay is at mast [

Next, we use a matched factor domatic coloring for the coloringd ah the central
scheme. This type of coloring was devised specifically for use in this construction.

Theorem 4. Let H be a graph with k edge-disjoint delay ¢ spann#is Ho, ..., H. If
H has a matched factor I-domatic coloring with respectH@, Ho, ..., Hi, then for any
connected graph (EDS(H x G, 2] + ¢) >k.

Proof. Consider a matched factbdomatic coloring oH with respect taHs, Ho, . . ., Hy
withcolors12,... k. Fori=1,2,...,k,letS;=H; % G.The graphss; are edge-disjoint
spanners o x G.

Considers; for somei. Letu =[h1, g1] andv =[ho, g2] be two vertices of;. Leth} be a
vertex of colori that is closest té in H;. The vertex: is a hub ofS;. There is a path it;
fromu=[hy, g11to[h}, g11to[h}, g21t0[h1, g21t0[h2, g2]=v, with lengthdy, (h1, h}) +
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dc(g1. 82) +dp; (WY, h1) +dp; (h1, ho) = 2dy, (h1, h}) +dc (g1, g2) +dp; (h1, h2). Since
we started with a matched factedomatic coloringdy, (k7, h1) <!, and the length of this
path is at most2+ dg (g1, g2) +dy (h1, ho) +c =dyxcu,v) + 2 +c. O

With Alon [1], we established that every graph wikthedge-disjoint spanners has
a matched factofr(3k — 1) /2]-domatic coloring. Combining this result with Theorem 4, we
obtain:

Corollary 1. Let H be a graph such thd&DS(H, ¢) >k, and let G be any graph. Then
EDS(H x G, 2[(3k — 1)/2] + ¢) >k.

In the previous constructions, we built a set of good spannefs in G from a set of
spanners irH, all of which have low delay. By using an all-factor domatic coloring, we
may build a set of good spanners fidrx G from a set of spanners i, oneof which has
low delay. To do this, we slightly modify our central scheme, placing one copy of the low
delay spanner dfl in each spanner df x G.

Theorem 5. Let H be a graph with k edge-disjoint spannéfs, Ho, ..., H; such thatH;
is a delay c spanner and let H have an all-factgrdomatic coloring with k colors with
respect toH1, Ho, ..., Hy. Let G be a graph with am;-domatic coloring with k colors.
Then EDSH x G, 4r1 + 2rp + ¢) >k.

Proof. We divide the edges off x G into k spannersSy, So, ..., S; as follows: each
copy of H in H x G corresponds to a vertex @. If this vertex has color in the do-
matic coloring ofG, we place the edges @iy, Hp, ..., Hy into spannersy, So, ..., Sk,
respectively, except fof; and H;. We place the edges df; in S; and the edges off;
in S1. For each copy oG in H x G, there is a corresponding vertex Mf If this ver-
tex has coloii in the all-factor coloring oH, then we place all edges of this copy @f
ins;.

Letu = [hy, g1] andv = [h2, g2] be two vertices of;. Let#) be a vertex of color that
is closest tdz; in H. Similarly, leth, be a vertex of colorthat is closest té in H. Let g/
be a vertex of color (in G) that is closest tg, in G. There is a path i§; fromu = [h1, g1]
to [k, g1] to [R], g2] to [A], g5] tO [hY, g5] to [h), g2] to [h2, g2] = v; let P be a shortest
such path. The length of the subpathsPofrom u to [%, g1] and from[h, g»] to v are
each at most; by our all-factorr1-domatic coloring oH. The length of the subpath from
[h%, g1] to [h], g2]is dG (g1, g2)- The length of the subpaths frofh’, g2] to [47, ¢5] and
from [h), g51to [h), g2] are each at mosb by ourrp-domatic coloring ofG. The length
of the subpath fromh’, g5] to [k}, g5 is dp, (b)), hY) <dp (h'y, ) + c<dp(hY, h1) +
dg (h1, h2) + dp (h2, hY) + ¢ <dp(h1, h2) + 2r1 + . Thus, the total distance fromto v
alongPisdg(g1, g2) +dp(h1, ho) +4r1+2rp+c=dyxgu,v) +4r1+2rp+c. O

With Alon, we have shown that any graph wikledge-disjoint spanners has an all-factor
(12k log k)-domatic coloring withk colors. (This comes from an exact, rather than asymp-
totic, analysis of the proof of Theorem 2[it].) Combining this with the previous theorem,
we obtain:



G. Fertin et al./Discrete Mathematics 296 (2005) 167—-186 173

Corollary 2. Let H be a graph with k edge-disjoint spanners such tHatis a delay
¢ spanner. Let G be a graph with an r-domatic coloring with k colors. TBEXS(H x
G,2r +48klog k + ¢) >k.

In the preceding results, we have constructed a set of spannérsi using spanners
of H and complete copies @. The number of spanners & x G that can be obtained in
this manner is limited to the number of spannersiofo obtain more spanners &f x G,
we can use spanners@fand spanners ¢ in each spanner df x G. As our constructions
easily generalize to the product of an arbitrary number of base g#éphsy, ..., H,, we
state them for the general case.

Theorem 6. LetHy, Ho, ..., Hy, be graphs. LEEDS(H;, ¢;) >k; fori=1,2, ..., a. If for
i=1,..., o the domatic numbedtom(H;) >k; — o+ 1> 0, then

o o o
EDS(H H;, Zci + 2+[:r‘r11axa C,‘) > Zki — O(2+ o.
T i=1

i=1 i=1

Proof. Let G = [[/_1H;. Fori =1,2,...,a, let H;1, H; 2, ..., Hi, be a set of edge-
disjoint spanners off; each of delay;. We will construct) " k; — o? + o spanners o6.
These spanners are divided intelasses, one class for eagh. For each clasg we will
construct the spanners@fusing a spanneR; of ]’[#i H;.Class containsn; =k; —a+1
spannerss; 1, Si 2, ..., Si,m;- Spannes; ; consists of all copies dff; ; connected by some
copies of someR;. The remaining spanne#$; ,,,+1, H m;+2., - - ., Hi x, of H; are used in
the construction of the differing;, for i’ + i. SeeFig. 2for an example.

In particular, for any clask let

Ri=| [1 Himpia| x| T[] Himw
1<j<i-1 i+1<j<a

In eachs; ; some copies oR; will be used to connect the copiesHf ;. To this end, we
use a domatic coloring dff; withcolors 1 2,...,k; —a+ 1, and let

i
Si,j = H;i j X R;.

As H; ; spansH; andR; spans]_[j#i H;, the graphs; ; is a spanner oB.

We now show that all spanness ; are edge-disjoint. Consider a pair of spanngrs
andSy ;. If i =i’, thenj # j’. As H; ; and H; ; are edge-disjoint, and no copy &f is
in both §; ; ands; ;+, (by the color product constructiony; ; ands; ; are edge-disjoint.
Otherwise;j # i’. Inthis caseH; ; andH;/ j; must be edge-disjoint becaudgandH;: are
different spanners. Furthermore, by constructibrand R;; are also edge-disjoint. Thus,
Si.j € H;,j x R andSy ;; € Hyr j» x R;» are edge-disjoint.

We now establish the delay of spanngr;. Let u = [u1, up, ..., u,] andv = [vy,
V2, ..., V). Letu' =[u1, uo, ..., u;j—1, x, uiy1, uit2, ..., uy], wherexis a vertex of color
j that is closest tay; in H; ;. Letv' = [v1, v2, ..., vi—1, X, V41, Vi42, ..., Uy]. Let P be
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Fig. 2. Construction of spanners pf H;. The spanners of class 1 are shown at the top, the spanners of class 2 in
the middle, and those of clasat the bottom. In each spanner of claghe horizontal ovals denote copiesf

and vertical ovals denote copiesﬁfk# Hy.. Each copy offi; is labelled with which edges af; it includes.

Each copy oﬂk# H,, is labelled above indicating which edges it includes.

a shortest path is; ; from u to «’ to v’ to v. The length of the subpath & from u to «’
is at mostr; + 1 because; andx are at distance 1 ifl; and H; ; is a spanner off; with
delayc;. The length of the subpath &from u’ to v’ is at mostzj#i (du;(uj,vj) +cj)
by Lemma 1. The length of the subpathRfrom v’ to v is at mostdg, (u;, v;) + 1+ ¢;
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becauses andv; are at distance at mo8j, (u;, v;) + 1 in H;. Thus, the length oP is at
most

(ci+1+ Z(de(Mjs vj) +cj) +dp (Ui, vi) +1+c¢
J#i

o o o
:Zde(Mj,Uj)+ZCj +ci+2=dgu,v) +ch +ci + 2.
Jj=1 j=1 j=1

Therefore, eveng; ; has delay at mo{?zlcj +maxj—12 . qc; +2. O

It is known that every graplé has domatic number approximatelyG)/In A(G),
where §(G) and A4(G) denote the minimum and maximum degreesGfrespectively
[7]. Thus, the bound on doff;) in the Theorem will hold whe(H;) is sufficiently
large.

The previous theorem can be easily generalized, by allowing some base graphs to have
unrestricted domatic number, provided that the other base graphs have suitably high domatic
number. The parameten is used to denote the number of base graphs with unrestricted
domatic number; the cage = 0 corresponds to the previous theorem.

Theorem 7. Let Hi, Ho, ..., H, be graphs. LetO<m<o. Let EDS(H;, ¢;) >k; for
1<i<o Iffor 1<i<a—m,dom(H;)>k; —a+m + 1>0,and forae —m + 1<i <a,
the value ofk; > o — m — 1, then

o o o—m
EDS(H H. > ci+2+ max lc,~> >3 ki — o+ 2m+ Do —m? —m.
i=1,...,0—
i=1 i=1 i=1

Proof. The proof is similar to the proof of Theorem 6. The difference is that we do not
construct classes—m +1, a—m+2,...,0,andthereare nB,_,,, 11, Ry—m+2, ..., Ry.
Thus, fori <o —m, we need only use—m — 1 spannerg]; ; to connect spanners of classes
other than (spannerused iRy, ..., R,_,;). This allows us to havie — o+ m + 1 spanners

in each class, giving > 7" (ki — o+ m +1) =Y 7 'ki — o0 + (2m + Do — m? —m
spanners total. [J

Note that Theorem 7 gives more spanners than Theore.if,_,, .1 ki < (2m+1)o—

mz—m.

4. Hypercubes

Let O, denote thel-dimensional hypercube. Note thdy = Q,_; x Q; forany 1<i <d.
In this section, we prove bounds on the number of edge-disjoint spanners that can be found
in hypercubes. We begin with two lemmas that show how to construct a set of spanners
containing one good spanner. These lemmas will then be combined with Corollary 2 to
produce the main results of this section. We use the following results 28and[2],
respectively.
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G G G G G G ¢ ¢ G G G G
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7 z D
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i k 2 1 i 3 i k 2 1 i 3
S S

Fig. 3. Construction of spannersHfx G. In each part, copies @ are drawn as horizontal ovals, and copieblof
are drawn as vertical ovals. To the left of a cop¥ft is noted whether that copy corresponds to the distinguished
vertexz. To the right, a label indicates which edgeg®éare included. In a similar way, a label below a copy-Hof
indicates the color of the corresponding vertexGpfand a label above indicates which edgesi@re included.

Lemma 2 (Zelinka[22]). If mis a power oR, thendom(Q,,) = m.
This lemma implies a slightly weaker result wharis not a power of 2.

Corollary 3. For any integers >3 andm >2M°9%1 0, has al-domatic coloring with k
colors

To prove this, domatically color a'?9 1-dimensional subhypercube wikhcolors and
extend this coloring t@,, by repeating it in each copy of the subhypercube.

Lemma 3 (Alspach et al[2]). For even integer mQ,, can be decomposed inin/2
Hamilton cycles

Lemma 4. For any integersk >2 and d >4k — 2, there exists a set of k edge-disjoint
spannersSy, So, ..., S; of Q4 such thatS; has delay at mostk — 2.

Proof. We expresg), as the product of two graphd = Q2 andG = Q4_2. For our

construction, we want a decompositiortbinto a set ok Hamilton cycle<Cs, Co, . .., Ck,
a distinguished vertexof H, a 1-domatic coloring o6 with k colors, and a decompaosition
of Ginto a set ofk — 1 edge-disjoint spannei3y, D3, ..., Dy.

The decomposition dfl is possible by Lemma 3. The distinguished verzég chosen
arbitrarily. Fork = 2, constructing a 1-domatic coloring & is trivial. For k >3, this
coloring can be constructed by the previous corollary, sihee2k > 2k — 2> 2109 K1 > k.
The decomposition 0& can be done by obtaining a set/of- 1 edge-disjoint Hamilton
cycles and dispensing the remaining edges arbitrarily.

Now, we describe the construction of spann®&rsSy, . .., S (seeFig. 3). Each copy of
Hin H x G corresponds to a vertex of a particular caldn the domatic coloring ofs.
To construct spannef; wheni > 1, we include the edges of the cydg in the copy ofH
corresponding to each vertex@fthat is not colored. In the remaining copies ¢ (those
corresponding to a vertex & coloredi), we include the edges @f;. To completesS;, we
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include the edges ab; in the copy ofG corresponding to the distinguished verexX he
spannefSy will contain all of the remaining edges &f x G notincluded inS, S3, ..., Sk.
In particular, in each copy ¢ corresponding to a vertex &f coloredi, the spannef; will
contain the edges @f;, and all edges of each copy®f except the copy db corresponding
to the vertexz. In this copy,S1 contains no edges.

Consider a spanne, 2<i <k, and two arbitrary vertices andv. There is a path from
utovin S; that starts ati, proceeds within a copy ¢ to a copy ofz, then proceeds within
a copy ofG to another copy of, and then proceeds within a copy ldfto v. Thus,S; is
connected and, therefore, a spanner.

Now consider spanne§;. We first show that the delay between an arbitrary pair of
verticesu andv is at most 4 + 4. If uis a copy ofz, letu’ be a vertex adjacent win
S1 and otherwise let’ = u. Similarly, if v is a copy ofz, let v' be a vertex adjacent to
vin S3, and otherwise, let’ = v. Letu’ = [h1, g1] andv’ = [h2, g2]. Let w = [h1, g2],
that is,w is a copy ofu’ in the copy ofH containingv’. We call the copyH’. We will
construct a path fronu to v that commences at, and passes through, w, andv’ in
order and then arrives & The subpaths fromi to ' and fromv’ to v each contain at
most one edge. The subpath fourhto w can follow any shortest path between these
two vertices in the copy o6 containing them. The subpath fromto v’ requires further
elucidation. InH’, eitherw is v, w is adjacent tov’, or there are two vertex disjoint
shortest paths fromw to v’. Sincew andv’ are not copies of, there is a shortest path
from w to v’ in H’ that does not contain the copy nfSome of the edges & may not
be in S1. Let e = (x, y) be such an edge. In the cycle decompositionHof e belongs
to some cycleC;.In the domatic coloring of5, there is a vertex of coloy adjacent to
the vertex corresponding td’. Let x’ and y’ be the vertices corresponding xaandyy,
respectively, in the copy afl corresponding to this vertex of colgr By construction,
(x’, ¥") is in §1 and since neithex nory is the copy ofz, both(x, x’) and(y, y’) are edges
in S1. We use the patlx, x’, y/, y) to replace the edge:, y) in the pathP. Performing this
replacement for each such missing edge, we obtain afidth S1) fromwto v’ of length at
most 3y (w, v').

We have constructed a path franio #’ to wto v’ to v of length at most ¥ dg (u’, w) +
3dy (w, v')+1. The distance betweerandvin H x G isdg (u, v)+dy (u, v) > dg (', w)+
(dy (w, v) — 2), giving delay at most2y (w, v') + 4. SinceH = Qo, dy (w, v') <2k and
we obtain a simple bound on the delaySipat most 4 + 4.

We can improve this delay tak4- 2 by a careful consideration of cases.

If neitheru norv is a copy ofz, then the distance between themtnx G is dg (u, v) +
dy(u, v). We consider two cases. df; (w, v) = 2k, we choose® to start with an edge in
S1. This means we can construet of length at most @y (w, v) — 1) + 1, and we have
a path fromu to v in Sy of length at mostl/g (u, w) + 3dy (w, v) — 2. Thus, the delay is
at most 2y (w, v) — 2 =4k — 2. If dy(w, v) <2k — 1, then the length of’ is at most
3dy (w, v) <dy(w, v) + 2(2k — 1) and the delay is at mosk4- 2.

If exactly one ofu andv is a copy ofz, without loss of generality, the distance between
them inH x G isdg(u, w) + dg(w, v). If dg(w, v)>2k — 1, then we choose’ such
that the edggv, v') is in S1 anddy (w, v') = dy(w, v) — 1. This gives a pathP’ of
length at mostdy (w, v') + 2(2k — 1). Thus, the distance from to v in S7 is at most
de, w) +dy(w,v) +22k — 1)+ 1=dg(u, w) +dy(w, v) + 2(2k — 1), giving delay
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atmost 4 — 2. If dy (w, v) <2k — 2, then from the general construction, we obtain a delay
of at most 4 — 2 rather than the simple bound above.
If both u andv are both copies df, then the delay is at most®4k — 2. [J

For largerd, we can use a similar idea to reduce the delaypaven further.

Lemma 5. Foranyk>2,m >2,andd >2 ”’*n’j_l)+2(m +k — 2), there exists a set of k

edge-disjoint spannet, So, ..., S; of Q4 such thatS; has delay at moshax{6, 2[(2k —
1)/m] + 1}.

Proof. We proceed as in Lemma 4 expressifig as the product off = Q¢,4+x—1) and
G = Q4-20m+k—1)- We decomposH into a set oin + k — 1 Hamilton cycles and arbitrarily

choose a vertex We also construct a 1-domatic coloring@fvith (’"*yﬁl"l) colors. Since
d—2m+k—1)>2 (’”t’;*) — 2, thisis possible. As before, we decomp@siato k — 1

edge-disjoint spanners. We associate each o(’fhg_g colors with a unique choice of

m of the cycles in the decomposition df

In the copy ofH corresponding to a vertex of a particular coloGfwe place the edges
of the cycles associated with that color irfip The remaining — 1 cycles in this copy of
H are each placed into one of the- 1 spannersy, S3, ..., Sx. The edges of the copies of
G are placed into the spanners as in the proof of Lemma 4.

The analysis of the delay & is quite similar to the proof of Lemma 4 and we only
point out the major differences. To construct a path freo v’ (two vertices in the same
copy H' of H), we begin by taking as many edges$afas possible in the direction of
and not leading ta@’. When no such further step is possible, we are at a vartesxich that
dy(w',v") <2k — 1. Consider a shortest pahfrom w’ to v’ in H’ that does not contain
a copyz We divideP into [(|V(P)| — 1)/m] subpaths of length at most. Each such
subpath has edges from at masbf the cycles in the decomposition bif. Thus, by the
domatic coloring, there is a cop” of H adjacent taH’ in which all of the edges of this
subpath are in spannéi. We replace this subpath with an edgeH6, the corresponding
subpath in”, and an edge back t&’, encountering 2 units of delay. Sinfeé(P)| < 2k,
there are at mosf(2k — 1)/m] subpaths giving delay at mosf@k — 1)/m]. We get
delay at most 22k — 1)/m] + 1 when one ofu andv is a copy ofz, and delay 6 when
both are. [J

For a fixed number of spanneksincreasing the parameter in the previous lemma
leads to lower delay for spannéy, but a higher lower bound on the dimensiénThis
may be continued untiz = k at which point the delay is 6 and cannot be further decr-
eased.

As promised, we now combine the previous lemmas with Corollary 2 to give the main
results of this section. We uge= Q> (which has a 1-domatic coloring wittcolors) in
Corollary 2, andd = Q 4_2¢+2 from Lemma 4 or 5 to obtain Theorems 8 and 9, respectively.

Theorem 8. For k>2 andd >6k — 4, EDS Qy, 48k log k + 4k) > k.
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Theorem 9. Fork>2,m>2,andd > <m+n’;_1) + 2m + 4k — 4,

2k—1
EDS(Qd, 48klog k + 2+ max{G, 2 (—‘ + 1}) >k.
m

These theorems show that one can fineblge-disjoint spanners with del&@y(k log k)
in Q4 for sufficiently larged. In particular, beyond a certain dimension, the delay depends
only on the number of spanners and not the size of the cube.

Lemma 6. EDS(Qg4, 4) = 2.

Proof. Let us consider the following decomposition @f, into two Hamilton cycles, see

Fig. 4. One of the Hamilton cycles is depicted in bold edges and the another in dotted edges.
Itis only a time-consuming exercise to check that both these Hamilton cycles are spanners
of delay 4 inQ4. Since every spanner @i, must have at least 15 edges, apglhas only

32 edges, ED&4, 4 <2. O

Theorem 10. Ford >6, EDS Qy, 18) > 3.

Proof. For brevity, we here outline the general method of constructing three spanners
of delay 18 inQg. The full details of the construction are given in the appendix. Af-
ter the sketch of the proof faPgs, we describe how to extend the construction to higher
dimensions.

We view Qg as four copiedi1, H», Hs, H4 of Q4 interconnected by four sets of edges.
We decompose eacH; into a Hamilton cycle and two matchings. Spann&rsand S;
contain Hamilton cycles irH; and Ha, respectively, and each contains three matchings,
one each in the remaining;’s. SpanneiSs includes the remaining two Hamilton cycles
and two matchings.

Each of the four sets of interconnecting edges is divided in half. To do this, we 2-color
eachQg in the same manner. An interconnecting edge is placed in one subset if its ends
are colored 1 and placed in the other subset otherwise. The two subsets of each set of
interconnecting edges will be assigned to two different spanners. In particular, we give the

Fig. 4. Two Hamilton cycles i04.
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Fig. 5. Construction of three spanners@j. The four ovals represent the four copiegf. Each oval is divided
into three parts. The top part represents edges of the spéprée middle part edges ¢b and the bottom part
edges ofs3. If a spannes; includes edges of the Hamilton cycle in the capy, the corresponding part is marked
with a circle. If a spannes; includes edges of a matching in the caidy, the corresponding part is marked with
four vertical lines.

edges betweei; and H2 to S1 and S, the edges betweeH, and H3 to S and S3, the
edges betweell3 and H, to S1 and Sz, and the edges betweéfy and H to S1 and Ss,
seeFig. 5

At this point, S1 and S; are connected and each contains a single cycle. The subgraph
S3, however, consists of two components, each with one cycle. To ensure that all three
subgraphs are spanners, we may exchange one or more of the interconnecting gdges of
betweenH3 and Hy with an equal number of edges 8§ in the Hamilton cycle offi,. At
this point, eacls; is connected and contains one cycle. In particular, adontains the
Hamilton cycle inH,;.

If we ignore the delays introduced by the edges exchanged betfyesmd S3, we can
easily obtain a rough estimate of the delay between any two vetiaeslv in S; or S».
There is a path frommtovin S; (i =1, 2) that consists of three sections: one frarto the
cycle in H;, one around the cycle, and one from the cycls.tdo get fromu to the cycle
takes at most four edges, going around the cycle takes at most half the cycle length (eight
edges), and to get from the cyclewtakes at most four more edges. This is a total distance
of at most 16, a delay at most 14 betwaeandv. The actual analysis &f; and Sz must
take into account the exchanged edges. This analysis is tedious and contains no insight and
is thus omitted here. By careful choice of the decomposition of éaclwvhich matchings
to assign to each spanner, which subsets of interconnecting edges to assign to each spanner,
and which edges to exchange, we may obtain a set of spanners with maximum delay 18.
This construction has been verified by computer and the details of the construction are given
in the appendix.

To extend this construction to higher dimensions, we start with the three spahangss
and Sz in Qg as described above. Again, we vigdy as four copies ofD4, and we color
the vertices offf; with color 1, H»> with color 2, andH3 U H,4 with color 3. To construct
three spanner§y, S;, andS; of Q, for d > 6, we group the lower 6 dimensions and the
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Upper bounds on the delay bfpanners irQ; for smallk andd
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Table 1b
Results used to get the corresponding entrickalvle 1a
d/k 1 2 3 4 5 6 7 8 10 11 12
4 Trivial Lemma 6
5 Trivial Theorem 3
6 Trivial Theorem 3 Theorem 10
7  Trivial Theorem 3 Theorem 10
8 Trivial Theorem3 Theorem 10 Lemma 7
9 Trivial Theorem 3 Theorem 10 Corollary 1
4Q8
10 Trivial Theorem 3 Theorem 10 Corollary 1 Lemma 7
4Q8
11  Trivial Theorem 3 Theorem 10 Corollary 1 Corollary 1
Trivial Theorem 3 Theorem 10 4Q8 5Q10
12  Trivial Theorem 3 Theorem 10 Theorem 6 Corollary 1 Lemma 7
3Q6,30Q06 5Q10
13 Trivial Theorem3 Theorem 10 Theorem 6 Corollary1  Corollary 1
30Q6, 3Q7 5Q10 6Q12
14  Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Lemma 7
306,308 3Q6, 4Q8 6Q12
15 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Corollary 1

306,3Q9 3Q7,4Q8 6Q12 7Q14

281
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Trivial

Trivial

Trivial

Trivial

Trivial

Trivial

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 10 Theorem 6 Theorem 6
306, 3010 3Q8, 408
Theorem 10 Theorem 6 Theorem 6
306, 3011 4Q8, 3Q9
Theorem 10 Theorem 6 Theorem 6
3Q6,30Q12 306, 4Q12
Theorem 10 Theoresm 6 Theorem 6
306, 3Q13 3Q6, 4Q13
Theorem 10 Theorem 6 Theorem 6
306, 3Q14 3Q6, 4Q14, 56
Theorem 10 Theorem 6 Theorem 6

Theorem6 Corollary 1 Lemma?7
4Q8,4Q8 7Q14
Corollary 1 Corollary 1  Corollary 1
6Q16 7Q14 8Q16
Corollary 1 Theorem 6 Corollary1 Lemma?7
6Q16 4Q8,5Q10 8Q16
Corollary 1 Theorem 6 Corollary 1 Corollary 1
6Q16 4Q9,5Q10 8Q16 9Q18
Theorem6 Theorem6 Theorem6 Corollaryl Lemma7
4Q8,4Q12 4Q10,5Q10 5Q10,5Q10 9Q18
Theorem6 Theorem6 Corollary1 Corollary 1 Corollary 1

3Q6, 3Q15 3Q6, 4Q15
Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6
3Q6,3Q16 3Q6,4Q16
Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6
3Q6,3Q17 3Q6, 4Q17
Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6
306, 3Q18 3Q6, 4Q18
Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6
3Q6,3Q19 3Q6, 4Q19

4Q8, 4Q13 5Q10,4Q11 8Q20 9Q18 10Q20

Theorem6 Theorem6 Corollaryl Corollary 1 Corollaryl Lemma?7
4Q8,4Q14 4Q8,5Q14 8Q20 90Q18 10Q20

Theorem6 Theorem6 Corollaryl Theorem6 Corollary1 Corollary 1
40Q8,4Q15 4Q8,5Q15 8Q20 5Q11, 6Q12 10Q20 11Q22

Theorem6 Theorem6 Theorem6 Theorem6 Theorem6 Corollary1 Lemm&?
4Q12,4Q12 4Q8,5Q16 4Q8,6Q16 5Q12,6Q12 5Q12,6Q12 11Q22

Theorem6 Theorem6 Theorem6 Theorem6 Corollary1l Corollary 1 Corollagy 1
4Q12,4Q13 4Q8,5Q17 4Q9,6Q16 6Q12,5Q13 10Q24 11Q22 12Q24
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upperd — 6 dimensions and view, as Qs x Qq—6. We then let eacls; be the color-

products; x Q4_s. We now establish that each of the spanrgsss,, and S; has delay

at most 18. Consider two verticesandv in S.. If u andv do not differ in any of the
upperd — 6 dimensions, then the delay between them is at most 18 by the construction
above.

If uandyv differ in the upper dimensions, consider a shortest pafttom u to v’ where
v" has the same lower coordinatesvasd upper coordinates aslf P includes a vertex
of colori, then we may construct a path frano v by following P from u to w, following
edges in the upper dimensions as necessary, and then following the remadesjetted
to the copy ofQg containingv. Since there is no delay encountered in travelling the upper
dimensions, this path has delay at most 18.

If P does not include a vertex of colgrthen letw be the closest vertex of coloto u.
Observe thatv is also the closest vertex of coloto v’. Based on the sketch abowe,s
within distance 6 of bothhandv’. For the exact construction presented in the appendix, these
distances are at most 5. The path frarto w followed by the necessary upper dimension
edges to a vertew’ and then tor has delay at most 12.[]

Lemma 7. Ford >2, EDSQy, 2971 —2) = |d/2].

Proof. This follows from the fact thatd /2] Hamilton cycles can be found i@, and the
fact that the delay of any spanner of any bipartite graph must be evén.

We conclude this section withable 1awhich shows a lower bound on the delay for a
set ofk spanners irQ,;. These bounds were obtained by the application of various results
from this paper. For each value enteredlable 1athe corresponding entry ifiable 1b
indicates how the value was obtained. The bottom line indicates particular set of edge-
disjoint spanners used. For example, the sttigh, c Od indicatesa spanners o), and
¢ spanners of.
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Appendix

In this appendix, we include a description of a set of three edge-disjoint spann@gs of
These spanners have delay 14, 14, and 18. We view the set of spanners as a 3-coloring of
edges and describe the constructiomable 2by listing the label of every vertex along
with the colors of its incident edges in order of increasing dimenisibar example, vertex
000000 has edges in dimension 4 and 5 in spafipein dimensions 1 and 3 in spanner
S», and in dimension 2 and 6 in spanr®r The delay of each of these spanners has been
verified by computer.



Table 2
Representation of three spannergig
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