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Abstract

A spanning subgraphS= (V ,E′) of a connected graphG= (V ,E) is an(x+ c)-spanner if for any
pair of verticesu andv, dS(u, v)�dG(u, v) + c wheredG anddS are the usual distance functions
in G andS, respectively. The parameterc is called the delay of the spanner. We study edge-disjoint
spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct
sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of
the component graphs. We present several results on general products and then narrow our focus to
hypercubes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A spanner of a graph is a spanning subgraph in which the distance between any pair of
vertices approximates the distance in the original graph.Although spanners were introduced
by Peleg and Ullman[20] for simulation of synchronous distributed systems, they are an
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interesting graph theoretical structure with application to many problems in interconnection
networks[4,5,18,19]. The use of spanners as a network topology (as a substitute for an
expensive original topology) was suggested by Richards and Liestman[21] and further
studied in a series of papers by Liestman and Shermer[15,13,16,14,17]and Heydemann et
al. [8]. Algorithms for constructing spanners have also been studied[3,6,9,10].

One problem encountered in parallel computing is to share the resources among several
users concurrently. One way to approach this problem is to multitask on the computers but
to dedicate each link to an individual user. In graph-theoretic terms, this corresponds to
partitioning the edges into a set of edge-disjoint spanners. Laforest et al.[11] studied edge-
disjoint spanners in complete graphs and in complete digraphs. Laforest et al.[12] studied
edge-disjoint spanners in complete bipartite graphs. In this paper, we continue this line of
study, investigating edge-disjoint spanners in Cartesian products of graphs (and specifically
in hypercubes). The remainder of this paper is organized as follows: in Section 2, along
with other definitions and notation, we define our problem. In Section 3, we investigate
edge-disjoint spanners in general Cartesian products. In Section 4, we restrict our attention
to hypercubes.

2. Definitions

A network is represented by a connected simple graphG = (V (G),E(G)). We use
dG(u, v) to denote the distance from vertexu to vertexv in graphG. A spannerS of a
connected simple graphG is anf (x)-spannerif for any pair of verticesu andv, dS(u, v)�
f (dG(u, v)). We calldS(u, v) − dG(u, v) thedelay between vertices u and v in S. For an
f (x)-spannerS, we refer tof (x)− x as thedelayof the spanner. Note thatf (x)− x is an
upper bound (but not necessarily a tight bound) on the maximum delay inSbetween any
pair of vertices at distancex in G.

We useH × G to denote the Cartesian product of base graphsH andG. The vertex
setV (H × G) is V (H) × V (G) = {[u, v] : u ∈ V (H) andv ∈ V (G)}. The edge set
E(H ×G) contains all pairs([u, v], [u′, v′]) such that either (1)u=u′ and(v, v′) ∈ E(G),
or (2) v = v′ and(u, u′) ∈ E(H). The definition easily extends to the product ofn base
graphsG1×G2×· · ·×Gn which will be denoted by

∏n
i=1Gi . The following generalization

of the Cartesian product is useful in constructing edge-disjoint spanners. Given a coloring

of vertices ofH, thecolor-i productof graphsH andG, writtenH
i×G, is the graph with

vertex setV (H)× V (G) and all edges([u, v], [u′, v′]) such that (1)u= u′, the color ofu
in H is i, and(v, v′) ∈ E(G), or (2) v = v′ and(u, u′) ∈ E(H). Note that if all vertices
of H are coloredi, then the color-i product is simply the Cartesian product. For technical
reasons while performing the operation of the color-i product we extend the coloring ofH

toH
i×G by assigning the color ofu ∈ V (H) to every vertex[u, v] ∈ V (H i×G).

The (closed) neighborhoodof a vertexv in graphG, denotedNG[v], is {x ∈ V :
dG(v, x)�1}. More generally, thed-neighborhood,Nd

G[v] of v in G is{x∈V : dG(v, x)�d}.
A d-dominating setof vertices in graphG is a setS ⊆ V such that every vertex inV is in

thed-neighborhood of some element ofS. A d-domatic coloringof G is a vertex coloring of
G such that each color class constitutes ad-dominating set ofG. A d-domatic coloring need
not be a proper vertex coloring; we allow adjacent vertices to be assigned the same color.
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The maximum number of colors in anyd-domatic coloring of a fixed graphG is called the
d-domatic numberof G. The 1-domatic number of a graphG is the well-known domatic
number ofG and will be denoted bydom(G).

LetGbe a graph and letS1, S2, . . . , Sk be edge-disjoint subgraphs ofG.A vertex coloring
of G is called anall-factor d-domatic coloring of G with respect toS1, S2, . . . , Sk if the
vertices of each color constitute ad-dominating set in eachSj for 1�j�k. In contrast, a
vertex coloring ofG with k colors is called amatched-factor d-domatic coloring of G with
respect toS1, S2, . . . , Sk if the vertices of each colori constitute ad-dominating set of the
subgraphSi . These colorings were studied by Alon et al.[1] and we will use the results of
that paper below.

Our goal is to investigate small delay spanners of Cartesian products. We are particularly
interested in those spanners with constant delay, i.e.(x + c)-spanners for constantc. More
precisely, given a constantc, we are interested in the maximum number of edge-disjoint
(x + c)-spanners that can be found inG. We let EDS(G, c) denote this number.

3. General Cartesian products

In this section, we present several results on the number of edge-disjoint spanners that
can be found in graphs that are the Cartesian product of other graphs. Typically, these results
are lower bounds on the number of spanners inH ×G, based on the number of spanners of
H and some properties ofH or its spanners. We start with a preliminary lemma concerning
the delay of a spanner constructed as the Cartesian product of spanners.

Lemma 1. Let G1,G2, . . . ,G� be graphs and letSi be a delayci spanner ofGi for
i= 1,2, . . . , �. ThenS=∏�

i=1Si is a delay c spanner ofG=∏�
i=1Gi , wherec=∑�

i=1ci .

Proof. As eachSi is a spanner ofGi , it follows that S is a spanner ofG. Let u =
[u1, u2, . . . , u�] andv= [v1, v2, . . . , v�] be two vertices ofG such thatui, vi ∈ V (Gi) for
eachi. Then,dS(u, v)=∑�

i=1dSi (ui, vi)�
∑�
i=1(dGi (ui, vi)+ ci)= dG(u, v)+∑�

i=1ci .
Thus,S is a delayc spanner ofG as claimed. �

The constructions in the remainder of this section follow a central scheme which is il-
lustrated inFig. 1. In particular, we construct spanners ofH ×G by taking a color product
of a spanner ofH with G. That is, each spanner ofH × G will include the same edges
in each copy ofH, some entire copies ofG, and no other edges. The edges included in
each copy ofH are the edges of some spanner ofH. The copies ofG included in a par-
ticular spanner correspond to a color class in a coloring ofH. In a particular spannerS
of H × G, those vertices ofH corresponding to a copy ofG that is included inS are
calledhubs. We can bound delays of such spanners inH × G by delays along paths in
H that include a hub. In general, the number of spanners ofH × G that we obtain de-
pends on the number of color classes in the coloring ofH and the number of spanners
of H in the set of edge-disjoint spanners ofH. The delay of the spanners ofH × G de-
pends on the coloring ofH and the properties of the spanners in the set of edge-disjoint
spanners ofH.
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Fig. 1. A central scheme for the construction of spanners ofH × G. Three spanners are shown. Each spanner
contains some copies ofG indicated by the vertical ovals and a spanner in each copy ofH indicated by the horizontal
ovals. The spannersHi of H are chosen from a set of edge-disjoint spanners ofH.

In the following theorem, we use the connectivity of the spanners ofH to bound the delay
of the spanners ofH ×G.

Theorem 1. Let H be a graph on n vertices with k edge-disjoint delay c spanners, each of
which is�-connected. Then for any connected graph G,

EDS

(
H ×G, c + 2

⌊
n− �n/k� − 1

�

⌋
+ 2

)
�k.

Proof. LetH1, H2, . . . , Hk be�-connected edge-disjoint delayc spanners ofH. Color the
vertices ofH with colors 1,2, . . . , k, in such a way that every color class has cardinality at
least�n/k� (where we allow adjacent vertices to receive the same color). Fori=1,2, . . . , k,

let Si =Hi
i×G. Thesek graphs are edge-disjoint spanners ofH ×G.

Consider the spannerSi for somei. Let u = [h1, g1] andv = [h2, g2] be two vertices
of Si , whereh1, h2 ∈ V (H) andg1, g2 ∈ V (G). Let h′

1 be a vertex of colori that is
closest toh1 in Hi . The vertexh′

1 is a hub ofSi . There is a pathP in Si from u= [h1, g1]
to [h′

1, g1] to [h′
1, g2] to [h1, g2] to [h2, g2] = v with lengthdHi (h1, h

′
1) + dG(g1, g2) +

dHi (h
′
1, h1)+ dHi (h1, h2)= 2dHi (h1, h

′
1)+ dG(g1, g2)+ dHi (h1, h2). SinceHi has delay

c, dHi (h1, h2)�dH (h1, h2)+ c, and the delay ofP is at most 2dHi (h1, h
′
1)+ c.

We now bounddHi (h1, h
′
1). If h1 = h′

1, thendHi (h1, h
′
1) = 0, and the lemma follows.

Therefore we may assume thath1 �= h′
1. Let h∗ be any vertex of colori in Hi . By our

assumption,h1 �= h∗. SinceHi is �-connected, there are� vertex-disjoint paths fromh1 to
h∗ in Hi . As there are at mostn− 1 − �n/k� vertices ofHi different fromh1 and of color
other thani, one of these vertex-disjoint paths contains at most�(n− 1 − �n/k�)/�� such
vertices. Sinceh∗ has colori, on this path, there must be a vertex of colori at distance at
most�(n− 1 − �n/k�)/�� + 1 fromh1. As a consequence,

dHi (h1, h
′
1)�

⌊
n− 1 − �n/k�

�

⌋
+ 1,

and the delay ofP is at most 2�(n− 1 − �n/k�)/�� + 2 + c, giving the result. �
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By using the same construction but considering the diameters of the spanners ofH rather
than their connectivities, one obtains the following result.

Theorem 2. Let H be a graph with k edge-disjoint spanners each of diameter at most d.
Then for any connected graph G, EDS(H ×G,2d)�k.

In the previous theorems, we have placed relatively few conditions on the coloring used
in our central scheme. In what follows, we make use of more sophisticated colorings to
obtain better bounds.

The following theorem uses a natural proper coloring ofH and will be a useful starting
point for our investigation of hypercube spanners in Section 4.

Theorem 3. Let H be any bipartite graph and letc�2 be an integer. IfEDS(H, c)�2,
then for any connected graph G, EDS(H ×G, c)�2.

Proof. We can properly color vertices ofH with colors 1 and 2. LetH1 andH2 be edge-

disjoint delayc spanners ofH. Fori=1,2, letSi =Hi
i×G. S1 andS2 are two edge-disjoint

spanners ofH ×G.
In the following, we bound the delay ofS1, the case ofS2 is similar. Letu= [h1, g1] and

v = [h2, g2] be two vertices ofS1. If g1 = g2, then bothu andv are in some copy ofH1 in
H ×G and their delay is at mostc. Otherwiseg1 �= g2.

First consider the case whenh1 =h2. Leth′
1 be a neighbor ofh1 inH1. Eitherh1 orh′

1 is
of color 1. Ifh′

1 has color 1, then there is a pathP fromu=[h1, g1] to [h′
1, g1] to [h′

1, g2] to
[h1, g2] = v with length 1+ dG(g1, g2)+ 1�2+ dG(g1, g2). If h1 is the vertex of color 1,
there is a path fromu to v with lengthdG(g1, g2). In either case, the delay is at most 2�c.

Now consider the case whenh1 �= h2. If h1 has color 1, then there is a path inS1 from
u=[h1, g1] to[h1, g2] to[h2, g2]=vwith lengthdG(g1, g2)+dH1(h1, h2)�dH×G(u, v)+c.
Otherwise,h1 has color 2. Leth′

1 be a neighbor ofh1 on a shortest path fromh1 to h2 in
H1. There is a path inS1 fromu=[h1, g1] to [h′

1, g1] to [h′
1, g2] to [h2, g2]= v with length

1+dG(g1, g2)+ (dH1(h1, h2)−1)�dG(g1, g2)+dH (h1, h2)+c=dH×G(u, v)+c. Thus,
in either case, the delay is at mostc. �

Next, we use a matched factor domatic coloring for the coloring ofH in the central
scheme. This type of coloring was devised specifically for use in this construction.

Theorem 4. Let H be a graph with k edge-disjoint delay c spannersH1, H2, . . . , Hk. If
H has a matched factor l-domatic coloring with respect toH1, H2, . . . , Hk, then for any
connected graph G, EDS(H ×G,2l + c)�k.

Proof. Consider a matched factorl-domatic coloring ofH with respect toH1, H2, . . . , Hk

with colors 1,2, . . . , k. Fori=1,2, . . . , k, letSi =Hi
i×G. The graphsSi are edge-disjoint

spanners ofH ×G.
ConsiderSi for somei. Letu=[h1, g1] andv=[h2, g2] be two vertices ofSi . Leth′

1 be a
vertex of colori that is closest toh1 inHi . The vertexh′

1 is a hub ofSi . There is a path inSi
fromu=[h1, g1] to [h′

1, g1] to [h′
1, g2] to [h1, g2] to [h2, g2]=v, with lengthdHi (h1, h

′
1)+
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dG(g1, g2)+ dHi (h
′
1, h1)+ dHi (h1, h2)= 2dHi (h1, h

′
1)+ dG(g1, g2)+ dHi (h1, h2). Since

we started with a matched factorl-domatic coloring,dHi (h
′
1, h1)� l, and the length of this

path is at most 2l + dG(g1, g2)+ dH (h1, h2)+ c = dH×G(u, v)+ 2l + c. �

With Alon [1], we established that every graph withk edge-disjoint spanners has
a matched factor�(3k−1)/2�-domatic coloring. Combining this result with Theorem 4, we
obtain:

Corollary 1. Let H be a graph such thatEDS(H, c)�k, and let G be any graph. Then
EDS(H ×G,2�(3k − 1)/2� + c)�k.

In the previous constructions, we built a set of good spanners inH × G from a set of
spanners inH, all of which have low delay. By using an all-factor domatic coloring, we
may build a set of good spanners forH ×G from a set of spanners inH, oneof which has
low delay. To do this, we slightly modify our central scheme, placing one copy of the low
delay spanner ofH in each spanner ofH ×G.

Theorem 5. Let H be a graph with k edge-disjoint spannersH1, H2, . . . , Hk such thatH1
is a delay c spanner and let H have an all-factorr1-domatic coloring with k colors with
respect toH1, H2, . . . , Hk. Let G be a graph with anr2-domatic coloring with k colors.
Then, EDS(H ×G,4r1 + 2r2 + c)�k.

Proof. We divide the edges ofH × G into k spannersS1, S2, . . . , Sk as follows: each
copy of H in H × G corresponds to a vertex ofG. If this vertex has colori in the do-
matic coloring ofG, we place the edges ofH1, H2, . . . , Hk into spannersS1, S2, . . . , Sk,
respectively, except forH1 andHi . We place the edges ofH1 in Si and the edges ofHi
in S1. For each copy ofG in H × G, there is a corresponding vertex ofH. If this ver-
tex has colori in the all-factor coloring ofH, then we place all edges of this copy ofG
in Si .

Let u= [h1, g1] andv = [h2, g2] be two vertices ofSi . Leth′
1 be a vertex of colori that

is closest toh1 in H. Similarly, leth′
2 be a vertex of colori that is closest toh2 in H. Letg′

2
be a vertex of colori (in G ) that is closest tog2 in G. There is a path inSi fromu=[h1, g1]
to [h′

1, g1] to [h′
1, g2] to [h′

1, g
′
2] to [h′

2, g
′
2] to [h′

2, g2] to [h2, g2] = v; let P be a shortest
such path. The length of the subpaths ofP from u to [h′

1, g1] and from[h′
2, g2] to v are

each at mostr1 by our all-factorr1-domatic coloring ofH. The length of the subpath from
[h′

1, g1] to [h′
1, g2] is dG(g1, g2). The length of the subpaths from[h′

1, g2] to [h′
1, g

′
2] and

from [h′
2, g

′
2]to [h′

2, g2] are each at mostr2 by our r2-domatic coloring ofG. The length
of the subpath from[h′

1, g
′
2] to [h′

2, g
′
2] is dHi (h

′
1, h

′
2)�dH (h′

1, h
′
2) + c�dH (h′

1, h1) +
dH (h1, h2)+ dH (h2, h

′
2)+ c�dH (h1, h2)+ 2r1 + c. Thus, the total distance fromu to v

alongP is dG(g1, g2)+ dH (h1, h2)+ 4r1 + 2r2 + c = dH×G(u, v)+ 4r1 + 2r2 + c. �

With Alon, we have shown that any graph withk edge-disjoint spanners has an all-factor
(12k log k)-domatic coloring withk colors. (This comes from an exact, rather than asymp-
totic, analysis of the proof of Theorem 2 in[1].) Combining this with the previous theorem,
we obtain:
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Corollary 2. Let H be a graph with k edge-disjoint spanners such thatH1 is a delay
c spanner. Let G be a graph with an r-domatic coloring with k colors. ThenEDS(H ×
G,2r + 48k log k + c)�k.

In the preceding results, we have constructed a set of spanners inH ×G using spanners
of H and complete copies ofG. The number of spanners ofH ×G that can be obtained in
this manner is limited to the number of spanners ofH. To obtain more spanners ofH ×G,
we can use spanners ofG and spanners ofH in each spanner ofH ×G. As our constructions
easily generalize to the product of an arbitrary number of base graphsH1, H2, . . . , H�, we
state them for the general case.

Theorem 6. LetH1, H2, . . . , H� be graphs. LetEDS(Hi, ci)�ki for i=1,2, . . . , �. If for
i = 1, . . . , �, the domatic numberdom(Hi)�ki − � + 1>0, then

EDS

( �∏
i=1

Hi,

�∑
i=1

ci + 2 + max
i=1,...,�

ci

)
�

�∑
i=1

ki − �2 + �.

Proof. Let G = ∏�
i=1Hi . For i = 1,2, . . . , �, let Hi,1, Hi,2, . . . , Hi,ki be a set of edge-

disjoint spanners ofHi each of delayci . We will construct
∑�
i=1ki − �2 + � spanners ofG.

These spanners are divided into� classes, one class for eachHi . For each classi, we will
construct the spanners ofG using a spannerRi of

∏
j �=iHj . Classi containsmi =ki −�+1

spannersSi,1, Si,2, . . . , Si,mi . SpannerSi,j consists of all copies ofHi,j connected by some
copies of someRi . The remaining spannersHi,mi+1, Hi,mi+2, . . . , Hi,ki of Hi are used in
the construction of the differingRi′ , for i′ �= i. SeeFig. 2for an example.

In particular, for any classi, let

Ri =

 ∏

1� j� i−1

Hj,mj+i−1


×


 ∏
i+1� j��

Hj,mj+i


 .

In eachSi,j some copies ofRi will be used to connect the copies ofHi,j . To this end, we
use a domatic coloring ofHi with colors 1,2, . . . , ki − � + 1, and let

Si,j =Hi,j
i×Ri .

AsHi,j spansHi andRi spans
∏
j �=iHj , the graphSi,j is a spanner ofG.

We now show that all spannersSi,j are edge-disjoint. Consider a pair of spannersSi,j
andSi′,j ′ . If i = i′, thenj �= j ′. AsHi,j andHi,j ′ are edge-disjoint, and no copy ofRi is
in bothSi,j andSi,j ′ , (by the color product construction),Si,j andSi,j ′ are edge-disjoint.
Otherwise,i �= i′. In this case,Hi,j andHi′,j ′ must be edge-disjoint becauseHi andHi′ are
different spanners. Furthermore, by constructionRi andRi′ are also edge-disjoint. Thus,
Si,j ⊆ Hi,j × Ri andSi′,j ′ ⊆ Hi′,j ′ × Ri′ are edge-disjoint.

We now establish the delay of spannerSi,j . Let u = [u1, u2, . . . , u�] and v = [v1,

v2, . . . , v�]. Letu′ = [u1, u2, . . . , ui−1, x, ui+1, ui+2, . . . , u�], wherex is a vertex of color
j that is closest toui in Hi,j . Let v′ = [v1, v2, . . . , vi−1, x, vi+1, vi+2, . . . , v�]. Let P be
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Fig. 2. Construction of spanners of
∏
Hi . The spanners of class 1 are shown at the top, the spanners of class 2 in

the middle, and those of classi at the bottom. In each spanner of classj, the horizontal ovals denote copies ofHj
and vertical ovals denote copies of

∏
k �=jHk . Each copy ofHj is labelled with which edges ofHj it includes.

Each copy of
∏
k �=jHk is labelled above indicating which edges it includes.

a shortest path inSi,j from u to u′ to v′ to v. The length of the subpath ofP from u to u′
is at mostci + 1 becauseui andx are at distance 1 inHi andHi,j is a spanner ofHi with
delayci . The length of the subpath ofP from u′ to v′ is at most

∑
j �=i (dHj (uj , vj ) + cj )

by Lemma 1. The length of the subpath ofP from v′ to v is at mostdHi (ui, vi) + 1 + ci
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becausex andvi are at distance at mostdHi (ui, vi) + 1 inHi . Thus, the length ofP is at
most

(ci + 1)+
∑
j �=i
(dHj (uj , vj )+ cj )+ dHi (ui, vi)+ 1 + ci

=
�∑
j=1

dHj (uj , vj )+
�∑
j=1

cj + ci + 2 = dG(u, v)+
�∑
j=1

cj + ci + 2.

Therefore, everySi,j has delay at most
∑�
j=1cj + maxj=1,2,...,�cj + 2. �

It is known that every graphG has domatic number approximately�(G)/ ln �(G),
where�(G) and �(G) denote the minimum and maximum degrees ofG, respectively
[7]. Thus, the bound on dom(Hi) in the Theorem will hold when�(Hi) is sufficiently
large.

The previous theorem can be easily generalized, by allowing some base graphs to have
unrestricted domatic number, provided that the other base graphs have suitably high domatic
number. The parameterm is used to denote the number of base graphs with unrestricted
domatic number; the casem= 0 corresponds to the previous theorem.

Theorem 7. Let H1, H2, . . . , H� be graphs. Let0�m<�. Let EDS(Hi, ci)�ki for
1� i��. If for 1� i�� − m, dom(Hi)�ki − � + m + 1>0, and for� − m + 1� i��,
the value ofki�� −m− 1, then

EDS

( �∏
i=1

Hi,

�∑
i=1

ci + 2 + max
i=1,...,�−1

ci

)
�

�−m∑
i=1

ki − �2 + (2m+ 1)� −m2 −m.

Proof. The proof is similar to the proof of Theorem 6. The difference is that we do not
construct classes�−m+ 1, �−m+ 2, . . . , �, and there are noR�−m+1, R�−m+2, . . . , R�.
Thus, fori��−m, we need only use�−m−1 spannersHi,j to connect spanners of classes
other thani (spanner used inR1, . . . , R�−m). This allows us to haveki−�+m+1 spanners
in each classi, giving

∑�−m
i=1 (ki − � + m + 1) =∑�−m

i=1 ki − �2 + (2m + 1)� − m2 − m

spanners total. �

Note that Theorem 7 gives more spanners than Theorem 6 if
∑�
i=�−m+1 ki < (2m+1)�−

m2 −m.

4. Hypercubes

LetQd denote thed-dimensional hypercube. Note thatQd=Qd−i×Qi for any 1� i < d.
In this section, we prove bounds on the number of edge-disjoint spanners that can be found
in hypercubes. We begin with two lemmas that show how to construct a set of spanners
containing one good spanner. These lemmas will then be combined with Corollary 2 to
produce the main results of this section. We use the following results from[22] and[2],
respectively.
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Fig. 3. Construction of spanners ofH ×G. In each part, copies ofG are drawn as horizontal ovals, and copies ofH
are drawn as vertical ovals. To the left of a copy ofG, it is noted whether that copy corresponds to the distinguished
vertexz. To the right, a label indicates which edges ofG are included. In a similar way, a label below a copy ofH
indicates the color of the corresponding vertex ofG, and a label above indicates which edges ofH are included.

Lemma 2 (Zelinka[22]). If m is a power of2, thendom(Qm)=m.

This lemma implies a slightly weaker result whenm is not a power of 2.

Corollary 3. For any integersk�3 andm�2�log k�,Qm has a1-domatic coloring with k
colors.

To prove this, domatically color a 2�log k�-dimensional subhypercube withk colors and
extend this coloring toQm by repeating it in each copy of the subhypercube.

Lemma 3 (Alspach et al.[2] ). For even integer m, Qm can be decomposed intom/2
Hamilton cycles.

Lemma 4. For any integersk�2 and d�4k − 2, there exists a set of k edge-disjoint
spannersS1, S2, . . . , Sk ofQd such thatS1 has delay at most4k − 2.

Proof. We expressQd as the product of two graphsH = Q2k andG = Qd−2k. For our
construction, we want a decomposition ofH into a set ofk Hamilton cyclesC1, C2, . . . , Ck,
a distinguished vertexzof H, a 1-domatic coloring ofG with k colors, and a decomposition
of G into a set ofk − 1 edge-disjoint spannersD2,D3, . . . , Dk.

The decomposition ofH is possible by Lemma 3. The distinguished vertexz is chosen
arbitrarily. Fork = 2, constructing a 1-domatic coloring ofG is trivial. For k�3, this
coloring can be constructed by the previous corollary, sinced − 2k�2k − 2�2�log k� �k.
The decomposition ofG can be done by obtaining a set ofk − 1 edge-disjoint Hamilton
cycles and dispensing the remaining edges arbitrarily.

Now, we describe the construction of spannersS1, S2, . . . , Sk (seeFig. 3). Each copy of
H in H × G corresponds to a vertex of a particular colori in the domatic coloring ofG.
To construct spannerSi wheni >1, we include the edges of the cycleCi in the copy ofH
corresponding to each vertex ofG that is not coloredi. In the remaining copies ofH (those
corresponding to a vertex ofG coloredi), we include the edges ofC1. To completeSi , we
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include the edges ofDi in the copy ofG corresponding to the distinguished vertexz. The
spannerS1 will contain all of the remaining edges ofH ×G not included inS2, S3, . . . , Sk.
In particular, in each copy ofH corresponding to a vertex ofG coloredi, the spannerS1 will
contain the edges ofCi , and all edges of each copy ofG, except the copy ofGcorresponding
to the vertexz. In this copy,S1 contains no edges.

Consider a spannerSi , 2� i�k, and two arbitrary verticesu andv. There is a path from
u to v in Si that starts atu, proceeds within a copy ofH to a copy ofz, then proceeds within
a copy ofG to another copy ofz, and then proceeds within a copy ofH to v. Thus,Si is
connected and, therefore, a spanner.

Now consider spannerS1. We first show that the delay between an arbitrary pair of
verticesu andv is at most 4k + 4. If u is a copy ofz, let u′ be a vertex adjacent tou in
S1 and otherwise letu′ = u. Similarly, if v is a copy ofz, let v′ be a vertex adjacent to
v in S1, and otherwise, letv′ = v. Let u′ = [h1, g1] andv′ = [h2, g2]. Let w = [h1, g2],
that is,w is a copy ofu′ in the copy ofH containingv′. We call the copyH ′. We will
construct a path fromu to v that commences atu, and passes throughu′, w, andv′ in
order and then arrives atv. The subpaths fromu to u′ and fromv′ to v each contain at
most one edge. The subpath formu′ to w can follow any shortest path between these
two vertices in the copy ofG containing them. The subpath fromw to v′ requires further
elucidation. InH ′, either w is v′, w is adjacent tov′, or there are two vertex disjoint
shortest paths fromw to v′. Sincew andv′ are not copies ofz, there is a shortest pathP
from w to v′ in H ′ that does not contain the copy ofz. Some of the edges ofP may not
be in S1. Let e = (x, y) be such an edge. In the cycle decomposition ofH ′, e belongs
to some cycleCj .In the domatic coloring ofG, there is a vertex of colorj adjacent to
the vertex corresponding toH ′. Let x′ andy′ be the vertices corresponding tox andy,
respectively, in the copy ofH corresponding to this vertex of colorj. By construction,
(x′, y′) is in S1 and since neitherx nory is the copy ofz, both(x, x′) and(y, y′) are edges
in S1. We use the path(x, x′, y′, y) to replace the edge(x, y) in the pathP. Performing this
replacement for each such missing edge, we obtain a pathP ′ (in S1) fromw tov′ of length at
most 3dH (w, v′).

We have constructed a path fromu to u′ to w to v′ to v of length at most 1+ dG(u
′, w)+

3dH (w, v′)+1. The distance betweenuandv inH×G isdG(u, v)+dH (u, v)�dG(u′, w)+
(dH (w, v

′)− 2), giving delay at most 2dH (w, v′)+ 4. SinceH =Q2k, dH (w, v′)�2k and
we obtain a simple bound on the delay inS1 at most 4k + 4.

We can improve this delay to 4k − 2 by a careful consideration of cases.
If neitheru norv is a copy ofz, then the distance between them inH ×G is dG(u, v)+

dH (u, v). We consider two cases. IfdH (w, v) = 2k, we chooseP to start with an edge in
S1. This means we can constructP ′ of length at most 3dH (w, v) − 1) + 1, and we have
a path fromu to v in S1 of length at mostdG(u,w) + 3dH (w, v) − 2. Thus, the delay is
at most 2dH (w, v) − 2 = 4k − 2. If dH (w, v)�2k − 1, then the length ofP ′ is at most
3dH (w, v)�dH (w, v)+ 2(2k − 1) and the delay is at most 4k − 2.

If exactly one ofu andv is a copy ofz, without loss of generalityv, the distance between
them inH × G is dG(u,w) + dH (w, v). If dH (w, v)�2k − 1, then we choosev′ such
that the edge(v, v′) is in S1 and dH (w, v′) = dH (w, v) − 1. This gives a pathP ′ of
length at mostdH (w, v′) + 2(2k − 1). Thus, the distance fromu to v in S1 is at most
dG(u,w)+ dH (w, v

′)+ 2(2k− 1)+ 1= dG(u,w)+ dH (w, v)+ 2(2k− 1), giving delay
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at most 4k− 2. If dH (w, v)�2k− 2, then from the general construction, we obtain a delay
of at most 4k − 2 rather than the simple bound above.

If both u andv are both copies ofz, then the delay is at most 6�4k − 2. �

For largerd, we can use a similar idea to reduce the delay onS1 even further.

Lemma 5. For anyk�2,m�2,andd�2
(
m+k−1
m

)
+2(m+ k−2), there exists a set of k

edge-disjoint spannersS1, S2, . . . , Sk ofQd such thatS1 has delay at mostmax{6,2�(2k−
1)/m� + 1}.

Proof. We proceed as in Lemma 4 expressingQd as the product ofH =Q2(m+k−1) and
G=Qd−2(m+k−1). We decomposeH into a set ofm+k−1 Hamilton cycles and arbitrarily

choose a vertexz. We also construct a 1-domatic coloring ofG with
(
m+k−1
m

)
colors. Since

d− 2(m+ k− 1)�2
(
m+k−1
m

)
− 2, this is possible. As before, we decomposeG into k− 1

edge-disjoint spanners. We associate each of the
(
m+k−1
m

)
colors with a unique choice of

m of the cycles in the decomposition ofH.
In the copy ofH corresponding to a vertex of a particular color ofG, we place the edges

of the cycles associated with that color intoS1. The remainingk − 1 cycles in this copy of
H are each placed into one of thek− 1 spannersS2, S3, . . . , Sk. The edges of the copies of
G are placed into the spanners as in the proof of Lemma 4.

The analysis of the delay ofS1 is quite similar to the proof of Lemma 4 and we only
point out the major differences. To construct a path fromw to v′ (two vertices in the same
copyH ′ of H), we begin by taking as many edges ofS1 as possible in the direction ofv′
and not leading toz′. When no such further step is possible, we are at a vertexw′ such that
dH ′(w′, v′)�2k − 1. Consider a shortest pathP fromw′ to v′ in H ′ that does not contain
a copyz. We divideP into �(|V (P )| − 1)/m� subpaths of length at mostm. Each such
subpath has edges from at mostm of the cycles in the decomposition ofH. Thus, by the
domatic coloring, there is a copyH ′′ of H adjacent toH ′ in which all of the edges of this
subpath are in spannerS1. We replace this subpath with an edge toH ′′, the corresponding
subpath inH ′′, and an edge back toH ′, encountering 2 units of delay. Since|V (P )|�2k,
there are at most�(2k − 1)/m� subpaths giving delay at most 2�(2k − 1)/m�. We get
delay at most 2�(2k − 1)/m� + 1 when one ofu andv is a copy ofz, and delay 6 when
both are. �

For a fixed number of spannersk, increasing the parameterm in the previous lemma
leads to lower delay for spannerS1, but a higher lower bound on the dimensiond. This
may be continued untilm = k at which point the delay is 6 and cannot be further decr-
eased.

As promised, we now combine the previous lemmas with Corollary 2 to give the main
results of this section. We useG=Q2k−2 (which has a 1-domatic coloring withk colors) in
Corollary 2, andH=Qd−2k+2 from Lemma 4 or 5 to obtain Theorems 8 and 9, respectively.

Theorem 8. For k�2 andd�6k − 4, EDS(Qd,48k log k + 4k)�k.
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Theorem 9. For k�2,m�2, andd�
(
m+k−1
m

)
+ 2m+ 4k − 4,

EDS

(
Qd,48k log k + 2 + max

{
6,2

⌈
2k − 1

m

⌉
+ 1

})
�k.

These theorems show that one can findk edge-disjoint spanners with delayO(k log k)
in Qd for sufficiently larged. In particular, beyond a certain dimension, the delay depends
only on the number of spanners and not the size of the cube.

Lemma 6. EDS(Q4,4)= 2.

Proof. Let us consider the following decomposition ofQ4 into two Hamilton cycles, see
Fig. 4. One of the Hamilton cycles is depicted in bold edges and the another in dotted edges.
It is only a time-consuming exercise to check that both these Hamilton cycles are spanners
of delay 4 inQ4. Since every spanner ofQ4 must have at least 15 edges, andQ4 has only
32 edges, EDS(Q4,4)�2. �

Theorem 10. For d�6, EDS(Qd,18)�3.

Proof. For brevity, we here outline the general method of constructing three spanners
of delay 18 inQ6. The full details of the construction are given in the appendix. Af-
ter the sketch of the proof forQ6, we describe how to extend the construction to higher
dimensions.

We viewQ6 as four copiesH1, H2, H3, H4 of Q4 interconnected by four sets of edges.
We decompose eachHi into a Hamilton cycle and two matchings. SpannersS1 andS2
contain Hamilton cycles inH1 andH2, respectively, and each contains three matchings,
one each in the remainingHi ’s. SpannerS3 includes the remaining two Hamilton cycles
and two matchings.

Each of the four sets of interconnecting edges is divided in half. To do this, we 2-color
eachQ4 in the same manner. An interconnecting edge is placed in one subset if its ends
are colored 1 and placed in the other subset otherwise. The two subsets of each set of
interconnecting edges will be assigned to two different spanners. In particular, we give the

Fig. 4. Two Hamilton cycles inQ4.
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S3

H2

H4 H3

S1
H1

S2

Fig. 5. Construction of three spanners ofQ6. The four ovals represent the four copies ofQ4. Each oval is divided
into three parts. The top part represents edges of the spannerS1, the middle part edges ofS2 and the bottom part
edges ofS3. If a spannerSi includes edges of the Hamilton cycle in the copyHj , the corresponding part is marked
with a circle. If a spannerSi includes edges of a matching in the copyHj , the corresponding part is marked with
four vertical lines.

edges betweenH1 andH2 to S1 andS2, the edges betweenH2 andH3 to S2 andS3, the
edges betweenH3 andH4 to S1 andS2, and the edges betweenH4 andH1 to S1 andS3,
seeFig. 5.

At this point,S1 andS2 are connected and each contains a single cycle. The subgraph
S3, however, consists of two components, each with one cycle. To ensure that all three
subgraphs are spanners, we may exchange one or more of the interconnecting edges ofS1
betweenH3 andH4 with an equal number of edges ofS3 in the Hamilton cycle ofH4. At
this point, eachSi is connected and contains one cycle. In particular, eachSi contains the
Hamilton cycle inHi .

If we ignore the delays introduced by the edges exchanged betweenS1 andS3, we can
easily obtain a rough estimate of the delay between any two verticesu andv in S1 or S2.
There is a path fromu to v in Si (i = 1,2) that consists of three sections: one fromu to the
cycle inHi , one around the cycle, and one from the cycle tov. To get fromu to the cycle
takes at most four edges, going around the cycle takes at most half the cycle length (eight
edges), and to get from the cycle tov takes at most four more edges. This is a total distance
of at most 16, a delay at most 14 betweenu andv. The actual analysis ofS1 andS3 must
take into account the exchanged edges. This analysis is tedious and contains no insight and
is thus omitted here. By careful choice of the decomposition of eachHi , which matchings
to assign to each spanner, which subsets of interconnecting edges to assign to each spanner,
and which edges to exchange, we may obtain a set of spanners with maximum delay 18.
This construction has been verified by computer and the details of the construction are given
in the appendix.

To extend this construction to higher dimensions, we start with the three spannersS1, S2,
andS3 in Q6 as described above. Again, we viewQ6 as four copies ofQ4, and we color
the vertices ofH1 with color 1,H2 with color 2, andH3 ∪ H4 with color 3. To construct
three spannersS′

1, S
′
2, andS′

3 of Qd for d >6, we group the lower 6 dimensions and the
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Table 1a
Upper bounds on the delay ofk spanners inQd for smallk andd

4 0 4
5 0 4
6 0 4 18
7 0 4 18
8 0 4 18 126
9 0 4 18 138

10 0 4 18 138 510
11 0 4 18 138 524
12 0 4 18 56 524 2046
13 0 4 18 56 524 2064
14 0 4 18 56 272 2064 8190
15 0 4 18 56 272 2064 8210
16 0 4 18 56 272 380 8210 32766
17 0 4 18 56 272 398 8210 32790
18 0 4 18 56 132 398 1148 32790 131070
19 0 4 18 56 132 398 1160 32790 131096
20 0 4 18 56 132 310 1160 1532 131096 524286
21 0 4 18 56 132 310 1160 1556 131096 524316
22 0 4 18 56 132 310 672 1556 4604 524316 2097150
23 0 4 18 56 132 310 672 1556 4618 524316 2097182
24 0 4 18 56 132 170 672 888 4618 6140 2097182 8388606
25 0 4 18 56 132 170 672 900 4618 6170 2097182 8388642

d/k 1 2 3 4 5 6 7 8 9 10 11 12



182
G

.Fe
rtin

e
ta

l./D
iscre

te
M

a
th

e
m

a
tics

2
9

6
(2

0
0

5
)

1
6

7
–

1
8

6

Table 1b
Results used to get the corresponding entries inTable 1a

d/k 1 2 3 4 5 6 7 8 9 10 11 12

4 Trivial Lemma 6
5 Trivial Theorem 3
6 Trivial Theorem 3 Theorem 10
7 Trivial Theorem 3 Theorem 10
8 Trivial Theorem 3 Theorem 10 Lemma 7
9 Trivial Theorem 3 Theorem 10 Corollary 1

4Q8
10 Trivial Theorem 3 Theorem 10 Corollary 1 Lemma 7

4Q8
11 Trivial Theorem 3 Theorem 10 Corollary 1 Corollary 1

Trivial Theorem 3 Theorem 10 4Q8 5Q10
12 Trivial Theorem 3 Theorem 10 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q6 5Q10
13 Trivial Theorem 3 Theorem 10 Theorem 6 Corollary 1 Corollary 1

3Q6, 3Q7 5Q10 6Q12
14 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q8 3Q6, 4Q8 6Q12
15 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Corollary 1

3Q6, 3Q9 3Q7, 4Q8 6Q12 7Q14
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16 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q10 3Q8, 4Q8 4Q8, 4Q8 7Q14
17 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Corollary 1 Corollary 1

3Q6, 3Q11 4Q8, 3Q9 6Q16 7Q14 8Q16
18 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Corollary 1 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q12 3Q6, 4Q12 6Q16 4Q8, 5Q10 8Q16
19 Trivial Theorem 3 Theorem 10 Theoresm 6 Theorem 6 Corollary 1 Theorem 6 Corollary 1 Corollary 1

3Q6, 3Q13 3Q6, 4Q13 6Q16 4Q9, 5Q10 8Q16 9Q18
20 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q14 3Q6, 4Q14, 56 4Q8, 4Q12 4Q10, 5Q10 5Q10, 5Q10 9Q18
21 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Corollary 1 Corollary 1

3Q6, 3Q15 3Q6, 4Q15 4Q8, 4Q13 5Q10, 4Q11 8Q20 9Q18 10Q20
22 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Corollary 1 Corollary 1 Lemma 7

3Q6, 3Q16 3Q6, 4Q16 4Q8, 4Q14 4Q8, 5Q14 8Q20 9Q18 10Q20
23 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Theorem 6 Corollary 1 Corollary 1

3Q6, 3Q17 3Q6, 4Q17 4Q8, 4Q15 4Q8, 5Q15 8Q20 5Q11, 6Q12 10Q20 11Q22
24 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Lemma 7

3Q6, 3Q18 3Q6, 4Q18 4Q12, 4Q12 4Q8, 5Q16 4Q8, 6Q16 5Q12, 6Q12 5Q12, 6Q12 11Q22
25 Trivial Theorem 3 Theorem 10 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Theorem 6 Corollary 1 Corollary 1 Corollary 1

3Q6, 3Q19 3Q6, 4Q19 4Q12, 4Q13 4Q8, 5Q17 4Q9, 6Q16 6Q12, 5Q13 10Q24 11Q22 12Q24
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upperd − 6 dimensions and viewQd asQ6 × Qd−6. We then let eachS′
i be the color-i

productSi
i×Qd−6. We now establish that each of the spannersS′

1, S
′
2, andS′

3 has delay
at most 18. Consider two verticesu and v in S′

i . If u and v do not differ in any of the
upperd − 6 dimensions, then the delay between them is at most 18 by the construction
above.

If u andv differ in the upper dimensions, consider a shortest pathP from u to v′ where
v′ has the same lower coordinates asv and upper coordinates asu. If P includes a vertexw
of color i, then we may construct a path fromu to v by following P from u to w, following
edges in the upper dimensions as necessary, and then following the remainder ofPprojected
to the copy ofQ6 containingv. Since there is no delay encountered in travelling the upper
dimensions, this path has delay at most 18.

If P does not include a vertex of colori, then letw be the closest vertex of colori to u.
Observe thatw is also the closest vertex of colori to v′. Based on the sketch above,w is
within distance 6 of bothuandv′. For the exact construction presented in the appendix, these
distances are at most 5. The path fromu to w followed by the necessary upper dimension
edges to a vertexw′ and then tov has delay at most 12.�

Lemma 7. For d�2, EDS(Qd,2d−1 − 2)= �d/2�.

Proof. This follows from the fact that�d/2� Hamilton cycles can be found inQd , and the
fact that the delay of any spanner of any bipartite graph must be even.�

We conclude this section withTable 1awhich shows a lower bound on the delay for a
set ofk spanners inQd . These bounds were obtained by the application of various results
from this paper. For each value entered inTable 1a, the corresponding entry inTable 1b
indicates how the value was obtained. The bottom line indicates particular set of edge-
disjoint spanners used. For example, the stringaQb, cQd indicatesa spanners ofQb and
c spanners ofQd .
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Appendix

In this appendix, we include a description of a set of three edge-disjoint spanners ofQ6.
These spanners have delay 14, 14, and 18. We view the set of spanners as a 3-coloring of
edges and describe the construction inTable 2by listing the label of every vertex along
with the colors of its incident edges in order of increasing dimensioni. For example, vertex
000000 has edges in dimension 4 and 5 in spannerS1, in dimensions 1 and 3 in spanner
S2, and in dimension 2 and 6 in spannerS3. The delay of each of these spanners has been
verified by computer.
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Table 2
Representation of three spanners inQ6

000000 2 3 2 1 1 3 010000 3 2 1 1 1 2 100000 3 3 2 1 2 3 110000 1 3 2 2 2 2
000001 2 2 3 1 3 1 010001 3 1 2 1 3 1 100001 3 2 3 1 3 1 110001 1 2 3 2 3 1
000010 3 3 2 1 3 1 010010 3 2 1 1 3 1 100010 3 3 2 1 3 1 110010 1 3 2 2 3 1
000011 3 2 1 3 1 2 010011 3 1 1 2 1 2 100011 3 2 1 3 2 2 110011 1 2 2 3 2 2
000100 3 3 2 1 3 1 010100 3 2 1 1 3 1 100100 3 3 2 1 3 1 110100 1 3 2 2 3 1
000101 3 2 3 1 1 2 010101 3 1 2 1 1 2 100101 3 2 3 1 2 2 110101 1 2 3 2 2 2
000110 2 3 2 1 1 3 010110 3 2 1 1 1 2 100110 3 3 2 1 2 3 110110 1 3 2 2 2 2
000111 2 2 1 3 3 1 010111 3 1 1 2 3 1 100111 3 2 1 3 3 1 110111 1 2 2 3 3 1
001000 3 2 3 1 3 1 011000 3 1 2 1 3 1 101000 3 2 3 1 3 1 111000 1 2 3 2 3 1
001001 3 2 3 1 1 2 011001 3 1 2 1 1 2 101001 3 2 3 1 2 2 111001 1 2 3 2 2 2
001010 2 2 3 1 1 3 011010 3 1 2 1 1 2 101010 3 2 3 1 2 3 111010 1 2 3 2 2 2
001011 2 2 1 3 3 1 011011 3 1 1 2 3 1 101011 3 2 1 3 3 1 111011 1 2 2 3 3 1
001100 2 2 3 1 1 3 011100 1 3 2 1 1 2 101100 2 3 3 1 2 3 111100 2 1 3 2 2 2
001101 2 3 3 1 3 1 011101 1 3 2 1 3 1 101101 2 3 3 1 3 1 111101 2 1 3 2 3 1
001110 2 2 3 1 3 1 011110 1 3 2 1 3 1 101110 2 3 3 1 3 1 111110 2 1 3 2 3 1
001111 2 3 1 3 1 2 011111 1 3 1 2 1 2 101111 2 3 1 3 2 2 111111 2 1 2 3 2 2
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