41 research outputs found

    Phenotype Presentation and Molecular Diagnostic Yield in Non-5q Spinal Muscular Atrophy

    Get PDF
    BACKGROUND AND OBJECTIVES: Spinal muscular atrophy (SMA) is mainly caused by homozygous SMN1 gene deletions on 5q13. Non-5q SMA patients' series are lacking, and the diagnostic yield of next-generation sequencing (NGS) is largely unknown. The aim of this study was to describe the clinical and genetic landscape of non-5q SMA and evaluate the performance of neuropathy gene panels in these disorders. METHODS: Description of patients with non-5q SMA followed in the different neuromuscular reference centers in France as well as in London, United Kingdom. Patients without a genetic diagnosis had undergone at least a neuropathy or large neuromuscular gene panel. RESULTS: Seventy-one patients from 65 different families were included, mostly sporadic cases (60.6%). At presentation, 21 patients (29.6%) showed exclusive proximal weakness (P-SMA), 35 (49.3%) showed associated distal weakness (PD-SMA), and 15 (21.1%) a scapuloperoneal phenotype (SP-SMA). Thirty-two patients (45.1%) had a genetic diagnosis: BICD2 (n = 9), DYNC1H1 (n = 7), TRPV4 (n = 4), VCP, HSBP1, AR (n = 2), VRK1, DNAJB2, MORC2, ASAH1, HEXB, and unexpectedly, COL6A3 (n = 1). The genetic diagnostic yield was lowest in P-SMA (6/21, 28.6%) compared with PD-SMA (16/35, 45.7%) and SP-SMA (10/15, 66.7%). An earlier disease onset and a family history of the disease or consanguinity were independent predictors of a positive genetic diagnosis. Neuropathy gene panels were performed in 59 patients with a 32.2% diagnostic yield (19/59). In 13 additional patients, a genetic diagnosis was achieved through individual gene sequencing or an alternative neuromuscular NGS. DISCUSSION: Non-5q SMA is genetically heterogeneous, and neuropathy gene panels achieve a molecular diagnosis in one-third of the patients. The diagnostic yield can be increased by sequencing of other neuromuscular and neurometabolic genes. Nevertheless, there is an unmet need to cluster these patients to aid in the identification of new genes

    Diagnosis and management of Becker muscular dystrophy: the French guidelines

    No full text
    International audienceBecker muscular dystrophy (BMD) is one of the most frequent among neuromuscular diseases, affecting approximately 1 in 18,000 male births. It is linked to a genetic mutation on the X chromosome. In contrast to Duchenne muscular dystrophy, for which improved care and management have changed the prognosis and life expectancy of patients, few guidelines have been published for management of BMD. Many clinicians are inexperienced in managing the complications of this disease. In France, a committee of experts from a wide range of disciplines met in 2019 to establish recommendations, with the goal of improving care of patients with BMD. Here, we present the tools to provide diagnosis of BMD as quickly as possible and for differential diagnoses. Then, we describe the multidisciplinary approach essential for optimum management of BMD. We give recommendations for the initial assessment and follow-up of the neurological, respiratory, cardiac, and orthopedic consequences of males who present with BMD. Finally, we describe the optimal therapeutic management of these complications. We also provide guidance on cardiac management for female carriers

    J Neurol Sci

    No full text
    Olfaction, one of our five main qualitative sensory abilities, is the action of smelling or the capacity to smell. Olfactory impairment can be a sign of a medical problem, from a benign nasal/sinus problem up to a potentially serious brain injury. However, although clinicians (neurologists or not) usually test the olfactory nerves in specific clinical situations (for example, when a neurodegenerative disorder is suspected), they may omit such tests in many other situations. With the recent COVID-19 pandemic, the resurgence of anosmia has reminded us of the importance of testing this sensorineural function. We retrace here the main historical steps and discoveries concerning olfaction and anosmia

    Confounding clinical presentation and different disease progression in CMT4B1

    No full text
    International audienceWe report seven Charcot-Marie-Tooth 4B1 (CMT4B1) patients from four families with distinctive features, presenting with severe distal weakness and cranial nerve involvement. Patient from family 1 presented with congenital varus foot deformity, progressive distal and proximal weakness leading to loss of ambulation at 14 years, bilateral facial palsy and prominent bulbar involvement. In three siblings from family 2, still ambulant in the second decade, neuropathy was associated with marked sweating and Arnold-Chiari syndrome. Patient from family 3, wheelchair-bound by 17 years, suffered from recurrent intestinal occlusion due to a mesenteric malformation. Patients from family 4, wheelchair-bound from age 6 years, were first diagnosed with type 1 Usher syndrome with congenital deafness and retinitis pigmentosa. CMT4B1 diagnosis was based upon suggestive clinical features and confirmed by the presence of recessive mutations in the MTMR2 gene. Our results expand the genetic and phenotypic spectrum of CMT4B1, which may include autonomic system involvement

    Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study

    No full text
    BACKGROUND: Mitochondrial functions are controlled by genes of both mitochondrial and nuclear DNA. Pathogenic variants affecting any of these are responsible for primary mitochondrial disorders (MIDs), which can be diagnosed during adulthood. Kidney functions are highly dependent on mitochondrial respiration. However, the prevalence of MID-associated nephropathies (MIDANs) is unknown in the adult population. We aimed to address this point and to provide a full characterization of MIDANs in this population.METHODS: We retrospectively included for observational study adults (≥16 years of age) with genetically diagnosed MID between 2000 and 2020 in our tertiary care academic centre when they had a chronic kidney disease (CKD) evaluation. MIDANs were ascertained by CKD occurring in MIDs. The phenotypic, biological, histopathological and genotypic characteristics were recorded from the medical chartsRESULTS: We included 80 MID-affected adults and ascertained MIDANs in 28/80 (35%). Kidney diseases under the care of a nephrologist occurred in only 14/28 (50%) of the adults with MIDAN. MIDANs were tubulointerstitial nephropathy in 14/28 patients (50%) and glomerular diseases in 9/28 (32.1%). In adults with MID, MIDAN was negatively associated with higher albumin levels {odds ratio [OR] 0.79 [95% confidence interval (CI) 0.67-0.95]} and vision abnormalities [OR 0.17 (95% CI 0.03-0.94)] and positively associated with hypertension [OR 4.23 (95% CI 1.04-17.17)]. CONCLUSION: MIDANs are frequent among adult MIDs. They are mostly represented by tubulointerstitial nephropathy or glomerular disease. Vision abnormalities, hypertension and albumin levels were independently associated with MIDANs. Our results pave the way for prospective studies investigating the prevalence of MIDANs among undetermined kidney disease populations

    History and current difficulties in classifying inherited myopathies and muscular dystrophies

    No full text
    International audienceThe wide spectrum of hereditary muscular disorders leads to unavoidable difficulties in their classification, even for specialists. For this reason, new proposals are required that would ultimately replace our current rather complex classifications by a simpler structure. Our proposal will be limited to dystrophic and non-dystrophic myopathies (excluding metabolic disorders, mitochondriopathies, and channelopathies) for which similar proposals would also be relevant. Various genes (encoding structural proteins associated with the sarcolemma, nuclear membrane proteins, and proteins involved in myofiber metabolism have now been sequenced and mutations ascribed to specific forms of inherited muscular disorders. Based on our observations and our recent proposals in other neurogenetic conditions and informal discussions with specialists of neuromuscular disorders, the prerequisite for a simple and sound classification for inherited muscular disorders should encompass the clinical and pathological phenotypes (described in a simple and clear manner), the mode of inheritance, and the mutated gene. We think that the denomination of the different subtypes could be simplified considerably, although any new proposal of classification of muscular disorders will need to be discussed in the neurological and genetic communities

    New structural variations responsible for Charcot-Marie-Tooth disease: The first two large KIF5A deletions detected by CovCopCan software

    No full text
    International audienceNext-generation sequencing (NGS) allows the detection of mutations in inherited genetic diseases, like the Charcot-Marie-Tooth disease (CMT) which is the most common hereditary peripheral neuropathy. The majority of mutations detected by NGS are single nucleotide variants (SNVs) or small indels, while structural variants (SVs) are often underdiagnosed. PMP22 was the first gene described as being involved in CMT via a SV of duplication type. To date, more than 90 genes are known to be involved in CMT, with mainly SNVs and short indels described. Herein targeted NGS and the CovCopCan bioinformatic tool were used in two unrelated families, both presenting with typical CMT symptoms with pyramidal involvement. We have discovered two large SVs in KIF5A, a gene known to cause axonal forms of CMT (CMT2) in which no SVs have yet been described. In the first family, the patient presented with a large deletion of 12 kb in KIF5A from Chr12:57,956,278 to Chr12:57,968,335 including exons 2-15, that could lead to mutation c.(130-943_c.1717-533del), p.(Gly44_Leu572del). In the second family, two cases presented with a large deletion of 3 kb in KIF5A from Chr12:57,974,133 to Chr12:57,977,210 including exons 24-28, that could lead to mutation c.(2539-605_*36 + 211del), p.(Leu847_Ser1032delins33). In addition, bioinformatic sequence analysis revealed that a NAHR (Non-Allelic-Homologous-Recombination) mechanism, such as those in the PMP22 duplication, could be responsible for one of the KIF5A SVs and could potentially be present in a number of other patients. This study reveals that large KIF5A deletions can cause CMT2 and highlights the importance of analyzing not only the SNVs but also the SVs during diagnosis of neuropathies
    corecore