5 research outputs found

    APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination

    Get PDF
    Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2

    Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome

    Get PDF
    We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with SjÓ§gren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis.</p

    The roles of APE1, APE2, DNA polymerase β and mismatch repair in creating S region DNA breaks during antibody class switch

    No full text
    Immunoglobulin class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded DNA breaks (DSBs) in immunoglobulin switch region DNA. The initial steps of DSB formation have been elucidated: cytosine deamination by activation-induced cytidine deaminase (AID) and the generation of abasic sites by uracil-DNA glycosylase (UNG). We show that abasic sites are converted into single-strand breaks (SSBs) by apurinic/apyrimidinic endonucleases (APE1 and APE2). If SSBs are near to each other on opposite strands, they will generate DSBs; but if distal from each other, mismatch repair appears to be required to generate DSBs. The resulting S region DSBs occur at dC residues that are preferentially targeted by AID. We also investigate whether DNA polymerase β, which correctly repairs SSBs resulting from APE activity, attempts to repair the breaks during CSR. We find that although polymerase β does attempt to repair S region DNA breaks in switching B cells, the frequency of AID-instigated breaks appears to outnumber the SSBs repaired correctly by polymerase β, and thus some DSBs and mutations are generated. We also show that the S region DSBs are introduced and resolved during the G1 phase of the cell cycle
    corecore