449 research outputs found

    A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

    Get PDF
    We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics

    The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates.

    Get PDF
    Since 1990, several techniques have been developed to photochemically inactivate pathogens in platelet concentrates, potentially leading to safer transfusion therapy. The three most common methods are amotosalen/UVA (INTERCEPT Blood System), riboflavin/UVA-UVB (MIRASOL PRT), and UVC (Theraflex-UV). We review the biology of pathogen inactivation methods, present their efficacy in reducing pathogens, discuss their impact on the functional aspects of treated platelets, and review clinical studies showing the clinical efficiency of the pathogen inactivation methods and their possible toxicity

    Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential

    Get PDF
    With wind power providing an increasing amount of electricity worldwide, the quantification of its spatio-temporal variations and the related uncertainty is crucial for energy planners and policy-makers. Here, we propose a methodological framework which (1) uses machine learning to reconstruct a spatio-temporal field of wind speed on a regular grid from spatially irregularly distributed measurements and (2) transforms the wind speed to wind power estimates. Estimates of both model and prediction uncertainties, and of their propagation after transforming wind speed to power, are provided without any assumptions on data distributions. The methodology is applied to study hourly wind power potential on a grid of 250×250 m2 for turbines of 100 m hub height in Switzerland, generating the first dataset of its type for the country. We show that the average annual power generation per turbine is 4.4 GWh. Results suggest that around 12,000 wind turbines could be installed on all 19,617 km2 of available area in Switzerland resulting in a maximum technical wind potential of 53 TWh. To achieve the Swiss expansion goals of wind power for 2050, around 1000 turbines would be sufficient, corresponding to only 8% of the maximum estimated potential

    Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.

    Get PDF
    BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics

    Rearrangement of the structure during nucleation of a cordierite glass doped with TiO2

    Get PDF
    Ordering of disordered materials occurs during the activated process of nucleation that requires the formation of critical clusters that have to surmount a thermodynamic barrier. The characterization of these clusters is experimentally challenging but mandatory to improve nucleation theory. In this paper, the nucleation of a magnesium aluminosilicate glass containing the nucleating oxide TiO2 is investigated using neutron scattering with Ti isotopic substitution and 27Al NMR. We identified the structural changes induced by the formation of crystals around Ti atoms and evidenced important structural reorganization of the glassy matrix

    CLIC simulations from the start of the linac to the interaction point

    Get PDF
    Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks

    Work Plans of the EUROTeV Technical Work Packages for 2005-2007

    Get PDF
    This report summarises the status of the work in the seven scientific Work Packages of EUROTeV as presented during the ILC-European Regional Meeting at Royal Holloway in June 2005. The purpose of the meeting was to monitor the progress and to contrast the developments inside EUROTeV with the worldwide developments of the GDE. The presentations of the entire meeting are available from http://www.pp.rhul.ac.uk/workshop/

    Validation and clinical application of a multiplex high performance liquid chromatography - tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections.

    Get PDF
    Unpredictable pharmacokinetics of antibiotics in patients with life-threatening bacterial infections is associated with drug under- or overdosing. Therapeutic drug monitoring (TDM) may guide dosing adjustment aimed at maximizing antibacterial efficacy and minimizing toxicity. Rapid and accurate analytical methods are key for real-time TDM. Our objective was to develop a robust high-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) for multiplex quantification of plasma concentrations of 12 antibiotics: imipenem/cilastatin, meropenem, ertapenem, cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam, amoxicillin, flucloxacillin, rifampicin, daptomycin. A single extraction procedure consisting in methanol plasma protein precipitation and H <sub>2</sub> O dilution was used for all analytes. After chromatographic separation on an Acquity UPLC HSS-T3 2.1 × 50 mm, 1.8 µm (Waters®) column, quantification was performed by electro-spray ionisation-triple quadrupole mass spectrometry with selected reaction monitoring detection. Antibiotics were divided in two pools of calibration according to the frequency of analyses requests in the hospital routine antibiotic TDM program. Stable isotopically-labelled analogues were used as internal standards. A single analytical run lasted less than 9 min. The method was validated based on FDA recommendations, including assessment of extraction yield (96-113.8%), matrix effects, and analytical recovery (86.3-99.6%). The method was sensitive (lower limits of quantification 0.02-0.5 µg/mL), accurate (intra/inter-assay bias -11.3 to +12.7%) and precise (intra/inter-assay CVs 2.1-11.5%) over the clinically relevant plasma concentration ranges (upper limits of quantification 20-160 µg/mL). The application of the TDM assay was illustrated with clinical cases that highlight the impact on patients' management of an analytical assay providing information with short turn-around time on antibiotic plasma concentration. This simple, robust high-throughput multiplex HPLC-MS/MS assay for simultaneous quantification of plasma concentrations of 12 daily used antibiotics is optimally suited for clinically efficient real-time TDM

    Blastocystis hominis and Endolimax nana Co-Infection Resulting in Chronic Diarrhea in an Immunocompetent Male

    Get PDF
    Blastocystis hominis and Endolimax nana exist as two separate parasitic organisms; however co-infection with the two individual parasites has been well documented. Although often symptomatic in immunocompromised individuals, the pathogenicity of the organisms in immunocompetent subjects causing gastrointestinal symptoms has been debated, with studies revealing mixed results. Clinically, both B. hominis and E. nana infection may result in acute or chronic diarrhea, generalized abdominal pain, nausea, vomiting, flatulence and anorexia. We report the case of a 24-year-old immunocompetent male presenting with chronic diarrhea and abdominal pain secondary to B. hominis and E. nana treated with metronidazole, resulting in symptom resolution and eradication of the organisms. Our case illustrates that clinicians should be cognizant of both B. hominis and E. nana infection as a cause of chronic diarrhea in an immunocompetent host. Such awareness will aid in a timely diagnosis and possible parasitic eradication with resolution of gastrointestinal symptoms

    Frequency Characteristics of Visually Induced Motion Sickness

    Get PDF
    This article was published in the journal, Human Factors [Sage Publications / © Human Factors and Ergonomics Society.]. The definitive version is available at: http://dx.doi.org/10.1177/0018720812469046Objective: The aim of this study was to explore the frequency response of visually induced motion sickness (VIMS) for oscillating linear motion in the foreand- aft axis. Background: Simulators, virtual environments, and commercially available video games that create an illusion of self-motion are often reported to induce the symptoms seen in response to true motion. Often this human response can be the limiting factor in the acceptability and usability of such systems. Whereas motion sickness in physically moving environments is known to peak at an oscillation frequency around 0.2 Hz, it has recently been suggested that VIMS peaks at around 0.06 Hz following the proposal that the summed response of the visual and vestibular selfmotion systems is maximized at this frequency. Methods: We exposed 24 participants to random dot optical flow patterns simulating oscillating foreand- aft motion within the frequency range of 0.025 to 1.6 Hz. Before and after each 20-min exposure, VIMS was assessed with the Simulator Sickness Questionnaire. Also, a standard motion sickness scale was used to rate symptoms at 1-min intervals during each trial. Results: VIMS peaked between 0.2 and 0.4 Hz with a reducing effect at lower and higher frequencies. Conclusion: The numerical prediction of the “crossover frequency” hypothesis, and the design guidance curve previously proposed, cannot be accepted when the symptoms are purely visually induced. Application: In conditions in which stationary observers are exposed to optical flow that simulates oscillating fore-and-aft motion, frequencies around 0.2 to 0.4 Hz should be avoided
    corecore