13 research outputs found

    Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display

    Get PDF
    International audienceSelf-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer, an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo-electron microscopy at near-atomic resolution and implemented novel, cost-effective, high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease, exemplifying the potential of our approach

    Tumor-Specific Imaging with Angiostamp800 or Bevacizumab-IRDye 800CW Improves Fluorescence-Guided Surgery over Indocyanine Green in Peritoneal Carcinomatosis

    No full text
    Complete surgical removal of lesions improves survival of peritoneal carcinomatosis and can be enhanced by intraoperative near-infrared fluorescence imaging. Indocyanine green (ICG) is the only near-infrared fluorescent dye approved for clinical use, but it lacks specificity for tumor cells, highlighting the need for tumor-selective targeting agents. We compared the tumor-specific near-infrared fluorescent probes Bevacizumab-IRDye 800CW and Angiostamp800, which target tumor angiogenesis and cancer cells, to ICG for fluorescence-guided surgery in peritoneal carcinomatosis of ovarian origin. The probes were administered to mice with orthotopic peritoneal carcinomatosis prior to conventional and fluorescence-guided surgery. The influence of neoadjuvant chemotherapy was also assessed. Conventional surgery removed 88.0 ± 1.2% of the total tumor load in mice. Fluorescence-guided surgery allowed the resection of additional nodules, enhancing the total tumor burden resection by 9.8 ± 0.7%, 8.5 ± 0.8%, and 3.9 ± 1.2% with Angiostamp800, Bevacizumab-IRDye 800CW and ICG, respectively. Interestingly, among the resected nodules, 15% were false-positive with ICG, compared to only 1.4% with Angiostamp800 and 3.5% with Bevacizumab-IRDye 800CW. Furthermore, conventional surgery removed only 69.0 ± 3.9% of the total tumor burden after neoadjuvant chemotherapy. Fluorescence-guided surgery with Angiostamp800 and Bevacizumab-IRDye 800CW increased the total tumor burden resection to 88.7 ± 4.3%, whereas ICG did not improve surgery at all. Bevacizumab-IRDye 800CW and Angiostamp800 better detect ovarian tumors and metastases than the clinically used fluorescent tracer ICG, and can help surgeons completely remove tumors, especially after surgery neoadjuvant chemotherapy

    Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR

    No full text
    International audienceLike several 50 nm-large nanocarriers, lipid nanoparticles (LNPs) can passively accumulate in tumors through the Enhanced Permeability and Retention effect. In this study, we developed PEGylated LNPs loaded with IR780 iodide as a contrast agent for NIR fluorescence imaging and modified them with cyclic RGD peptides in order to target integrin αvβ3. We demonstrate a specific targeting of the receptor with cRGD-LNPs but not with cRAD-LNP and standard LNP using HEK293(β3), HEK293(β3)-αvRFP, DU145 and PC3 cell lines. We also demonstrate that cRGD-LNPs bind to αvβ3, interfere with cell adhesion to vitronectin and co-internalize with αvβ3 within one hour. We then investigated their biodistribution and tumor targeting in mice bearing DU145 or M21 tumors. We observed no significant differences between cRGD-LNP and the non-targeted ones regarding their biodistribution and accumulation/retention in tumors. This suggested that despite an efficient formulation of the cRGD-LNPs, the cRGD-mediated targeting was not increasing the total amount of LNP that can already accumulate passively in the subcutaneous tumors via the Enhanced Permeability and Retention effect (EPR)

    Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo

    Get PDF
    International audienceAdvanced ovarian cancer is the most lethal gynecological cancer, with a high rate of chemoresistance and relapse. Photodynamic therapy offers new prospects for ovarian cancer treatment, but current photosensitizers lack tumor specificity, resulting in low efficacy and significant side-effects. In the present work, the clinically approved photosensitizer verteporfin was encapsulated within nanostructured lipid carriers (NLC) for targeted photodynamic therapy of ovarian cancer. Cellular uptake and phototoxicity of free verteporfin and NLC-verteporfin were studied in vitro in human ovarian cancer cell lines cultured in 2D and 3D-spheroids, and biodistribution and photodynamic therapy were evaluated in vivo in mice. Both molecules were internalized in ovarian cancer cells and strongly inhibited tumor cells viability when exposed to laser light only. In vivo biodistribution and pharmacokinetic studies evidenced a long circulation time of NLC associated with efficient tumor uptake. Administration of 2 mg·kg −1 free verteporfin induced severe phototoxic adverse effects leading to the death of 5 out of 8 mice. In contrast, laser light exposure of tumors after intravenous administration of NLC-verteporfin (8 mg·kg −1) significantly inhibited tumor growth without visible toxicity. NLC-verteporfin thus led to efficient verteporfin vectorization to the tumor site and protection from side-effects, providing promising therapeutic prospects for photodynamic therapy of cancer

    Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles

    No full text
    International audienceUtility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles This Trojan horse strategy aims at specifi cally killing tumor cells. To achieve this goal, High-Z-element nanoparticles brought by macrophages are stimulated using low doses of X-ray radiation. The nanoparticles (namely FERINJECT®) liberate toxic photoelectrons in situ without damaging the surrounding healthy tissues. With its specifi c targeting of cancer cells, this promising anticancer strategy could greatly improve the effi ciency of current radiotherapy. Many solid tumors and their metastases are still resistant to current cancer treatments such as chemo-and radiotherapy. The presence of a small population of Cancer Stem Cells in tumors is held responsible for relapses. Moreover, the various physical barriers of the organism (e.g. blood-brain barrier) prevent many drugs from reaching the target cells. In order to alleviate this constraint, we suggest a Trojan horse strategy consisting of intravascular injection of macrophages loaded with therapeutic nanoparticles (an iron nanoparticle-based solution marketed under the name of FERINJECT®) to bring a high quantity of the latter to the tumor. The aim of this article is to assess the response of primary macrophages to FERINJECT® via functional assays in order to ensure that the macrophages loaded with these nano-particles are still relevant for our strategy. Following this first step, we demonstrate that the loaded macro-phages injected into the bloodstream are able to migrate to the tumor site using small-animal imaging. Finally, using synchrotron radiation, we validate an improvement of the radiotherapeutic effect when FERINJECT®-laden macrophages are deposited at the vicinity of cancer cells and irradiated

    Ultraviolet–visible–near-infrared optical properties of amyloid fibrils shed light on amyloidogenesis

    No full text
    International audienceAmyloid fibres attract considerable interest due to their biological role in neurodegenerative diseases and their potential as functional biomaterials. Here, we describe an intrinsic signal of amyloid fibres in the near-infrared range. When combined with their recently reported blue luminescence, it paves the way towards new blueprints for the label-free detection of amyloid deposits in in vitro and in vivo contexts. The blue luminescence allows for staining-free characterization of amyloid deposits in human samples. The near-infrared signal offers promising prospects for innovative diagnostic strategies for neurodegenerative diseases—to improve medical care and for the development of new therapies. As a proof of concept, we demonstrate direct detection of amyloid deposits within brains of living, aged mice with Alzheimer’s disease using non-invasive and contrast-agent-free imaging. Ultraviolet–visible–near-infrared optical properties of amyloids open new research avenues for amyloidosis as well as for next-generation biophotonic devices
    corecore