226 research outputs found

    Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations

    Get PDF
    Novel, high-fidelity results related to soot from microgravity flames were obtained by an international topical team on fire safety in space. More specifically, embedded optical techniques for evaluation of the soot-related radiative feedback to the base material from a spreading non-premixed flame in microgravity were developed. The configuration used a non-buoyant axisymmetric flame propagating in an opposed laminar stream overa Low Density PolyEthylene coating of an electrical wire. Within this context, both the standard Broadband Two Color Pyrometry (B2CP) and its recent extension Broadband Modulated Absorption/Emission (BMAE) technique can be deployed to measure the spatial distribution of soot temperature and volume fraction within the flame. Both fields are then processed to establish the field of local radiative balance attributed to soot within the flame, and ultimately the soot contribution to the radiative flux to the wire. The present study first assesses the consistency of the methodology contrasting an experimental frame and a synthetic one, the latter being produced by a signal modeling that processes fields delivered by a numerical simulation of the configuration as inputs. Using the synthetic signals obtained, the fields of local radiative balance within the flame are then computed and significant discrepancies were disclosed locally between the fields originating from the synthetic BMAE and B2CP inputs. Nevertheless, the subsequent evaluation of the soot-related radiative heat feedback to the wire shows that a weak deviation among the techniques implemented is expected. This finding is corroborated by similar evaluations conducted with experimental BMAE and B2CP measurements obtained in parabolic flights. As BMAE is implemented in an ISS configuration within the SCEM rig, BMAE and B2CP will soon provide long-duration soot observations in microgravity. In order to contrast the upcoming results, this current study quantifies discrepancies originating from the post-processing regarding soot temperature and volume fraction, and shows that the radiative feedback evaluation from both methods should be consistent

    Effects of oxygen depletion on soot production, emission and radiative heat transfer in opposed-flow flame spreading over insulated wire in microgravity

    Get PDF
    This paper investigates experimentally and numerically pressure effects on soot production and radiative heat transfer in non-buoyant opposed-flow flames spreading over wires coated by Low Density PolyEthylene (LPDE). Experiments, conducted in parabolic flights, consider pressure levels ranging from 50.7 kPa to 121.6 kPa and an oxidizer flowing parallel to the wire's axis at a velocity of 150 mm/s and composed of 20% O2/80% N2 in volume. The numerical model includes a detailed chemistry, a two-equation smoke-point based soot production model, a radiation model coupling the Full-Spectrum correlated-k method with the finite volume method and a simple degradation model for LDPE. An analysis of the experimental data shows that the spread rate, the pyrolysis mass flow rate, and the residence time for soot formation are independent of pressure whereas the soot formation rate is third-order in pressure. The model reproduces quantitatively the effects of pressure on soot production and captures the transition from non-smoking to smoking flames. The radiant fraction increases with pressure because of an enhancement in soot radiation whereas the contribution of radiating gases remains approximately constant over the range of pressures considered. In addition, gas radiation dominates at pressure lower than 75 kPa whereas soot radiation prevails at higher-pressure levels. Consistently with the data obtained at normal gravity, the smoke-point transition is found to occur for a radiant fraction of about 0.3 and the soot oxidation freezing temperature is estimated in the range 1350-1450K. Eventually, whatever the pressure considered, the surface re-radiation from the wire is higher than the incident radiative flux from the flame to the surface along the entire wire. This shows that radiative heat transfer contributes negatively to the heating of the unburnt LDPE and to the heat balance along the pyrolysing surface

    Fate of trace metals in anaerobic digestion

    Get PDF
    © Springer International Publishing Switzerland 2015. A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments— often agricultural lands receiving discharge waters from anaerobic digestion processes— simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.The authors acknowledge funding within the framework of the COST Action 1302 (‘European Network on Ecological Roles of Trace Metals in Anaerobic Biotechnologies’). GC is supported by a European Research Council Starting Grant (‘3C-BIOTECH; No. 261330).Peer Reviewe

    Appeal No. 0873: Stonebridge Operating Co., LLC. v. Division of Oil & Gas Resources Management

    Get PDF
    Chief\u27s Orders 2014-39 (suspension of operations); 2014-236, 2014-238,2014-239, 2014-241 (denials of plug-back permits); 2014-253, 2014-256 thru 2014-262 & 2014-264 thru 2014-266 (plug orders

    Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: Optical designs and associated limitations

    Get PDF
    Novel, high-fidelity results related to soot from microgravity flames were obtained by an international topical team on fire safety in space. More specifically, embedded optical techniques for evaluation of the soot-related radiative feedback to the base material from a spreading non-premixed flame in microgravity were developed. The configuration used a non-buoyant axisymmetric flame propagating in an opposed laminar stream over a Low Density PolyEthylene coating of an electrical wire. Within this context, both the standard Broadband Two Color Pyrometry (B2CP) and its recent extension Broadband Modulated Absorption/Emission (BMAE) technique can be deployed to measure the spatial distribution of soot temperature and volume fraction within the flame. Both fields are then processed to establish the field of local radiative balance attributed to soot within the flame, and ultimately the soot contribution to the radiative flux to the wire. The present study first assesses the consistency of the methodology contrasting an experimental frame and a synthetic one, the latter being produced by a signal modeling that processes fields delivered by a numerical simulation of the configuration as inputs. Using the synthetic signals obtained, the fields of local radiative balance within the flame are then computed and significant discrepancies were disclosed locally between the fields originating from the synthetic BMAE and B2CP inputs. Nevertheless, the subsequent evaluation of the soot-related radiative heat feedback to the wire shows that a weak deviation among the techniques implemented is expected. This finding is corroborated by similar evaluations conducted with experimental BMAE and B2CP measurements obtained in parabolic flights. As BMAE is implemented in an ISS configuration within the SCEM rig, BMAE and B2CP will soon provide long-duration soot observations in microgravity. In order to contrast the upcoming results, this current study quantifies discrepancies originating from the post-processing regarding soot temperature and volume fraction, and shows that the radiative feedback evaluation from both methods should be consistent

    Bacterial Deposition of Gold on Hair: Archeological, Forensic and Toxicological Implications

    Get PDF
    Trace metal analyses in hair are used in archeological, forensic and toxicological investigations as proxies for metabolic processes. We show metallophilic bacteria mediating the deposition of gold (Au), used as tracer for microbial activity in hair post mortem after burial, affecting results of such analyses. Methodology/Principal Findings Human hair was incubated for up to six months in auriferous soils, in natural soil columns (Experiment 1), soils amended with mobile Au(III)-complexes (Experiment 2) and the Au-precipitating bacterium Cupriavidus metallidurans (Experiment 3), in peptone-meat-extract (PME) medium in a culture of C. metallidurans amended with Au(III)-complexes (Experiment 4), and in non-auriferous soil (Experiment 5). Hair samples were analyzed using scanning electron microscopy, confocal microscopy and inductively coupled plasma-mass spectrometry. In Experiments 1–4 the Au content increased with time (P = 0.038). The largest increase was observed in Experiment 4 vs. Experiment 1 (mean = 1188 vs. 161 µg Kg−1, Fisher's least significance 0.001). The sulfur content, a proxy for hair metabolism, remained unchanged. Notably, the ratios of Au-to-S increased with time (linear trend P = 0.02) and with added Au and bacteria (linear trend, P = 0.005), demonstrating that larger populations of Au-precipitating bacteria and increased availability of Au increased the deposition of Au on the hair. Conclusion/Significance Interactions of soil biota with hair post mortem may distort results of hair analyses, implying that metal content, microbial activities and the duration of burial must be considered in the interpretation of results of archeological, forensic and toxicological hair analyses, which have hitherto been proxies for pre-mortem metabolic processesGenevieve Phillips, Frank Reith, Clifford Qualls, Abdul-Mehdi Ali, Mike Spilde and Otto Appenzelle

    Population Carrier Rates of Pathogenic ARSA Gene Mutations: Is Metachromatic Leukodystrophy Underdiagnosed?

    Get PDF
    BACKGROUND: Metachromatic leukodystrophy (MLD) is a severe neurometabolic disease caused mainly by deficiency of arylsulfatase A encoded by the ARSA gene. Based on epidemiological surveys the incidence of MLD per 100,000 live births varied from 0.6 to 2.5. Our purpose was to estimate the birth prevalence of MLD in Poland by determining population frequency of the common pathogenic ARSA gene mutations and to compare this estimate with epidemiological data. METHODOLOGY: We studied two independently ascertained cohorts from the Polish background population (N∼3000 each) and determined carrier rates of common ARSA gene mutations: c.459+1G>A, p.P426L, p.I179S (cohort 1) and c.459+1G>A, p.I179S (cohort 2). PRINCIPAL FINDINGS: Taking into account ARSA gene mutation distribution among 60 Polish patients, the expected MLD birth prevalence in the general population (assuming no selection against homozygous fetuses) was estimated as 4.0/100,000 and 4.1/100,000, respectively for the 1(st) and the 2(nd) cohort with a pooled estimate of 4.1/100,000 (CI: 1.8-9.4) which was higher than the estimate of 0.38 per 100,000 live births based on diagnosed cases. The p.I179S mutation was relatively more prevalent among controls than patients (OR = 3.6, P = 0.0082, for a comparison of p.I179S frequency relative to c.459+1G>A between controls vs. patients). CONCLUSIONS/SIGNIFICANCE: The observed discrepancy between the measured incidence of metachromatic leukodystrophy and the predicted carriage rates suggests that MLD is substantially underdiagnosed in the Polish population. The underdiagnosis rate may be particularly high among patients with p.I179S mutation whose disease is characterized mainly by psychotic symptoms

    Histologic assessment of biliary obstruction with different percutaneous endoluminal techniques

    Get PDF
    BACKGROUND: Despite the sophisticated cross sectional image techniques currently available, a number of biliary stenosis or obstructions remain of an uncertain nature. In these pathological conditions, an "intrinsic" parietal alteration is the cause of biliary obstruction and it is very difficult to differentiate benign from malignant lesions using cross-sectional imaging procedures alone. We evaluated the efficacy of different endoluminal techniques to achieve a definitive pathological diagnosis in these situations. METHODS: Eighty patients underwent brushing, and or biopsy of the biliary tree through an existing transhepatic biliary drainage route. A subcoort of 12 patients needed balloon-dilatation of the bile duct and the material covering the balloon surface was also sent for pathological examination (balloon surface sampling). Pathological results were compared with surgical findings or with long-term clinical and instrumental follow-ups. Success rates, sensitivity, specificity, accuracy, confidential intervals, positive predictive value and negative predictive value of the three percutaneous techniques in differentiating benign from malignant disease were assessed. The agreement coefficient of biopsy and brushing with final diagnosis was calculated using the Cohen's "K" value. RESULTS: Fifty-six patients had malignant strictures confirmed by surgery, histology, and by clinical follow-ups. Success rates of brushing, balloon surface sampling, and biopsy were 90.7, 100, and 100%, respectively. The comparative efficacy of brushing, balloon-surface sampling, and biopsy resulted as follows: sensitivity of 47.8, 87.5, and 92.1%, respectively; specificity of 100% for all the techniques; accuracy of 69.2, 91.7 and 93.6%, Positive Predictive Value of 100% for all the procedures and Negative Predictive Value of 55, 80, and 75%, respectively. CONCLUSIONS: Percutaneous endoluminal biopsy is more accurate and sensitive than percutaneous bile duct brushing in the detection of malignant diseases (p < 0.01)

    Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

    Get PDF
    Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies
    • …
    corecore