185 research outputs found

    Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells

    Get PDF
    SummaryMitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study

    Get PDF
    Sepsis is the leading cause of death in Intensive Care Units. Novel sepsis biomarkers and targets for treatment are needed to improve mortality from sepsis. MicroRNAs (miRNAs) have recently been used as finger prints for sepsis, and our goal in this prospective study was to investigate if serum miRNAs identified in genome-wide scans could predict sepsis mortality.We enrolled 214 sepsis patients (117 survivors and 97 non-survivors based on 28-day mortality). Solexa sequencing followed by quantitative reverse transcriptase polymerase chain reaction assays was used to test for differences in the levels of miRNAs between survivors and non-survivors. miR-223, miR-15a, miR-16, miR-122, miR-193*, and miR-483-5p were significantly differentially expressed. Receiver operating characteristic curves were generated and the areas under the curve (AUC) for these six miRNAs for predicting sepsis mortality ranged from 0.610 (95%CI: 0.523-0.697) to 0.790 (95%CI: 0.719-0.861). Logistic regression analysis showed that sepsis stage, Sequential Organ Failure Assessment scores, Acute Physiology and Chronic Health Evaluation II scores, miR-15a, miR-16, miR-193b*, and miR-483-5p were associated with death from sepsis. An analysis was done using these seven variables combined. The AUC for these combined variables' predictive probability was 0.953 (95% CI: 0.923-0.983), which was much higher than the AUCs for Acute Physiology and Chronic Health Evaluation II scores (0.782; 95% CI: 0.712-0.851), Sequential Organ Failure Assessment scores (0.752; 95% CI: 0.672-0.832), and procalcitonin levels (0.689; 95% CI: 0.611-0.784). With a cut-off point of 0.550, the predictive value of the seven variables had a sensitivity of 88.5% and a specificity of 90.4%. Additionally, miR-193b* had the highest odds ratio for sepsis mortality of 9.23 (95% CI: 1.20-71.16).Six serum miRNA's were identified as prognostic predictors for sepsis patients.ClinicalTrials.gov NCT01207531

    A Panel of Serum MicroRNAs as Specific Biomarkers for Diagnosis of Compound- and Herb-Induced Liver Injury in Rats

    Get PDF
    Drug-induced liver injury (DILI) has been a public, economic and pharmaceutical issue for many years. Enormous effort has been made for discovering and developing novel biomarkers for diagnosing and monitoring both clinical and preclinical DILI at an early stage, though progress has been relatively slow. Additionally, herb-induced liver injury is an emerging cause of liver disease because herbal medicines are increasingly being used worldwide. Recently, circulating microRNAs (miRNAs) have shown potential to serve as novel, minimally invasive biomarkers to diagnose and monitor human cancers and other diseases at early stages.In order to identify candidate miRNAs as diagnostic biomarkers for DILI, miRNA expression profiles of serum and liver tissue from two parallel liver injury Sprague-Dawley rat models induced by a compound (acetaminophen, APAP) or an herb (Dioscorea bulbifera, DB) were screened in this study. The initial screens were performed on serum using a MicroRNA TaqMan low-density qPCR array and on liver tissue using a miRCURY LNA hybridization array and were followed by a TaqMan probe-based quantitative reverse transcription-PCR (qRT-PCR) assay to validate comparison with serum biochemical parameters and histopathological examination. Two sets of dysregulated miRNA candidates in serum and liver tissue were selected in the screening phase. After qRT-PCR validation, a panel of compound- and herb- related serum miRNAs was identified.We have demonstrated that this panel of serum miRNAs provides potential biomarkers for diagnosis of DILI with high sensitivity and specificity

    Effects of Tillage and Nitrogen Fertilizers on CH4 and CO2 Emissions and Soil Organic Carbon in Paddy Fields of Central China

    Get PDF
    Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha−1) on fluxes of CH4 and CO2, and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH4 emissions by 13%–66% and SOC by 21%–94% irrespective of soil sampling depths, but had no effect on CO2 emissions in either year. Tillage significantly affected CH4 and CO2 emissions, where NT significantly decreased CH4 emissions by 10%–36% but increased CO2 emissions by 22%–40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%–48% in the 0–5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0–20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered

    Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish

    Full text link
    • …
    corecore